
A,D-A1l-B 371 BULK CMOS VLSI TECHNOLOGY STUDIES PART 5 THE DESIGN AND J/2
IPLEMENTATION OF..(U) MISSISSIPPI STATE UNIV
MISSISSIPPI STATE DEPT OF ELECTRICAL E..

UNLSIIDJDTROTTER ET AL. 17 JUN 85 F/G 14/2 M

IH1-0 2__8 2-5_

1*51 *4 Ihf
1111111

NATIONAL BUREAU OF STANDARDS
MICROCOPY RESOLUTION4 TEST CHART

/'?139./-t-t-,..

FINAL REPORT

Ofb
CONTRACT DMAG29-82-K-0167

CoBULK CHOS VLSI TECHNOLOGY STUDIESIn
PART 5: TEE DESIGN AND IMPLEMENTATION OF A HIGH SPEED

INTEGRATED CIRCUIT FUNCTIONAL TESTER

It

Principal Investi-s tar

J. Donald Trotter

Associate Investigator

Boyle Dwayne Robbins

Mississippi State University
Department of Electrical Engineering
Mississippi State, Mississippi 39762

for
Defense Advance Research Projects Agency

1400 Wilson Ave.

Ci

SArlington, VA 22209 D OT "
.A for AG2 7 198

LA

U. S. Army Research Office

P. 0. Box 11211
Research Triangle Park, NC 27709 ~

IThis document has been approved
for public release and sale; its

distribution is unlimited.

. ~ ... '.'<.~85 8 23 041

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
I& REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Uncsified
2. SECURITY CLASSIFICATION AUTHORITY 3. DIST rIBUTION/AVAILABSILITY OF REPORT

This doc 7--'-t hcis bc-onr Opproved
2b.OELASIICAIO/0WNRAONGSCEDLEfcr pulcrd 7, r,1 p ale; its
~* ECLSSIICTIOjOONGRDIG SHEDLEdistributionl is 11!jinitd

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION

6&. NAME OF PERFORMING ORGANIZATION 5b. OFFICE SYMBOL 7.. NAME OF MO0NITORING ORGANIZATION

Miss. State University jElectrical Georgia Institute of Technology
6c. ADDRESS (City. State and ZIP Cad*) 7b. ADDRESS (City. State and ZIP Code)

Drawer EE 206 O'Keefe Building
Miss. State, MS 39762 Atlanta, GA 30332

B. NAME OF FUINDING/SPONSORING
1
Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION J(it applicabluj
U.S. Army Research Office DAAG29-82-K-0167

11k. ADDRESS (City. State and ZIP Codej 10. SOURCE OF FUNDING NOS.

P.O. Box 12211 PROGRAM PROJECT TASK WORK UNIT
ELIEME N NO NO.NO.NO.

Research Triangle Park, NC 27709-2211 EEETO O O

11. TITLE (include Security Classification)

Bulk CMOS VLSI Technology Studies

12. PERSONAL AUTHOR IS)
J. Donald Trotter, Hoyle Dwayne Robbins

13a. TYPE OF REPORT 13b. TIME COVERED 1&. DATE OF REPORT (Yr.. Mo.. Day) L5IAG ONT
Final FRM8-82 TO2-85 June ,1985

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS eCantinue on reverse if necessary and idmntify by block number)
FIELD GROUP SUB. GR. (Subtitle)

Design and Implementation of a High Speed Integrated Circui
Functional Tester

19. ABSTRACT (Contginue on rwuerts if neceaaay and identify by block niumbort

See page iii of Thesis.

20. DISTRIBSUTION/AVAI LAB)ILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFOED/UNLIMITL 73SAME AS RPT. 0 OTIC USERS C Unclassified

22.. NAME OF RESPONSIB3LE INDIVIDUAL 22b TELEPHONE NUMBER 22c. OFFICE SYMBOL

DO FORM 1473, 83 APR EDITION OF I JAN 73 IS OBSOLETE. Unclassified _________

SECURITY CLASSIFICATION OF THIS PAGE

FINAL REPORT

CONTRACT DAAC29-82-K-0I 67

BULK CMOS VLSI TECHNOLOGY STUDIES

PART 5: THE DESIGN AND IMPLEMENTATION OF A HIGH SPEED

INTEGRATED CIRCUIT FUNCTIONAL TESTER

Principal Investigator

J. Donald Trotter

Associate Investigator

Hoyle Dwayne Robbins

Mississippi State University
Department of Electrical Engineering
Mississippi State, Mississippi 39762

for
Defense Advance Research Projects Agency

1400 Wilson Ave.
* Arlington, VA 22209

fo r p o w l m 0,..

U. S. Army Research Office
P. 0. Box 11211

Research Triangle Park, NC 27709

June 17, 1985

...

' -[._ I _ . ! I I ! I . ii i , i , , .

iii

ABSTRACT

Hoyle Dwayne Robbins, Master of Science, December 1984

Major: Electrical Engineering, Department of Electrical
Engineering

Title of Thesis: The Design and Implementation of a High-Speed
Integrated Circuit Functional Tester

Directed by: Dr. William A. Hornfeck

Pages in Thesis: 183 Words in Abstract: 260

ABSTRACT

This thesis project discusses the design and implementation of a

functional tester to be used in a university laboratory facility for

integrated circuit development. The following tester capabilities

were desired:

1) 1OOKHz - 1OMHz TEST FREQUENCY

2) 2K x 64Bit TEST VECTOR SIZE)

3) FOUR USER PROGRAMMABLE CLOCKS,
/

4) TEST VECTOR INPUT USING HIGH-LEVEL LANGUAGE ,

5) TEST DATA MANIPULATION USING A HIGH-LEVEL

LANGUAGE ,"

The functional tester receives test vector data from a Hewlett

Packard HP9920A computer and loads this data into functional tester

buffer memory. After the data is down-loaded, including certain

operational information such as test clock frequency, programable

clock waveform information, data direction control, etc., the tester

initiates the test using 4random-logic' control circuitry to achieve

iv

the desired high speeds. The random-logic control circuitry

indicates the completion of the test, at which time the resultant

data, stored in buffer memory, is up-loaded to the HP9920A for

processing. This design approach to a functional tester for

laboratory use differs from --and improves upon-- previous methods,

in that random-logic control circuitry is used during the test phase

to provide greater operating speeds than systems which use

microprocessor-control for the complete test. AIso,_.a computer with

a high-level language is used for storing and transferring the test

vectors and processing the resultant data. Data pipeline registers

are used during the test phase so that the speed of the system is

not completely dependent on the access time of the memory elements

used for buffer memory. Programmable clocks, synchronized to the

test clock, are integrated into the system, programmable on both

their low-to-high and high-to-low transitions.

." -" -° " " •" ' - .- ,.w . b - .,, , .. . ' . . . ' ' ' "

V

TABLE OF CONTENTS

ABSTRACT iii

CHAPTER

I. INTRODUCTION

II. HARDWARE DESIGN 8

Computer Interface 15
Memory Boards 19
Programmable Clocks 23
Test-Phase Control 27
Device-Under-Test Interface 33

III. SOFTWARE DESIGN 40

Assembly Language Programs 41

PASCAL Programs 44

IV. OPERATION 51

Electrical Connections 52
Power-Up Initialization 53
Test Execution 55
Results Evaluation 60

V. EVALUATION AND DISCUSSION 61

APPENDICES

Appendix A: Test Station 67

Appendix B: Functional Tester Schematics 69

System Configuration 70
Computer Interface 71
Memory Board 1 75
Memory Board 2 81
Programmable Clocks 86
Test-Phase Control 91
DUT Interface 94

;.'.'.'.-,"- "-. ,.,'..~~~~~... ' - -..-.....

vi

Table of Contents (Cont'd)

Appendix C: Assembly Language Programs 101

Utility Program Flowchart 102
Utility Program104
Control Prog.-am Flowchart 106
Control Program Ill

Appendix D: PASCAL Program 115

Flowcharts 116
PASCAL Program137

Appendix E: Test Results168

2114 RAM Test 169
7404 Inverter Test 171
7482 Binary Adder Test174

REFERENCES 176

--'- " "-... , -... L- ..--...-..----.... . ..-.. -...- '-'. -.. ".

CHAPTER I

INTRODUCTION

Rapidly advancing semiconductor fabrication technology makes it

possible to integrate more sophisticated electronic systems

(one-million or more transistors) on a single semiconductor

integrated circuit. Not only are very large scale integration

(VLSI) c~rcuits becoming more complex and more prevalent, but the

advent of very high speed integrated circuits (VHSIC) is increasing

the speeds of these circuits tremendously. Some of the most

advanced VLSI designs are being produced through research in the

academic environment. The furthur development of computer-aided

design (CAD) tools makes it possible for universities to use

computer graphics systems with supporting software to undertake the

design and development of these complex circuits. One of the

problems facing universities is the ability to adequately test these

VLSI designs. Most automated test equipment is very expensive and

is geared toward industries which produce mass quantities of

integrated circuits, rather than a facility which may produce only a

few designs a year.

The testing requirements may be broken down into two categories -

parameter testing and functional testing, although the timing

parameters of a device may be determined through functional testing.

, -,. . , -,.- 'r . * i ' j ;. . i " """" """: "-" " , ,"-"" " "'"" "":''"""' -

One use of parameter testing is determining the nature of the defect

when integrated circuits are discovered to be faulty. Since most

universities "ship-out" their VLSI designs to silicon foundries to

be manufactured, the university has little control over the

fabrication techniques. This information is useful to the designer,

however, since differing design tehniques may produce differing

yield. Furthurmore, the particular nature of the defect is often

indicative of poor design methods, rather than purely fabrication

faults. The primary use of parameter testing for the VLSI designer

is in gathering information about different design patterns, which

in turn produces better design guidelines. An example of this is

the research currently being done using based on the 1.2 micron CMOS

technology. This technology is new enough that the design rules

have not been verified, and the information from D.C. parameter

testing is required to evaluate alternative design rules.

One use of functional testing is in differentiating faulty

integrated circuits from operable circuits at the silicon wafer

level. This is important even though universities may use silicon

foundries to manufacture their circuits, since the functionally good

slice must be identified for packaging. The other important use of

functional testing is measuring the transient response of an

integrated circuit to aid in design. Through testing at increasing

speeds until erroneous resultant data is produced, the maximum

operating speed of a device can be determined. The propagation

3

delay and data setup delay for a device can be determined by varying

the functional tester data output enable and data input strobe

pulses r:ntil erroneous data is produced.

The project undertaken at Mississippi State University was the

construction of a complete integrated circuit test station which

centered around the Hewlett Packard 9920A computer. The test

station was comprised of the following equipment:

HP9920A COMPUTER

HP9133B HARD/FLOPPY DISK DRIVE

HP82913 VIDEO MONITOR

HP KEYBOARD

HP7475A PLOTTER

HP4145 PARAMETER ANALYZER

HP4275A LCR METER

HP3455A DIGITAL VOLTMETER

IDS P-132 PRISM PRINTER

MATRIX SYSTEMS 3111 COAXIAL SWITCHING MATRIX

ELECTROGLAS 900 SEMI-AUTOMATIC PROBE STATION

MSU FUNCTIONAL TESTER

Appendix A presents pictures of the completed test station. Also

included in Appendix A is a system diagram showing the

interconnections between the various components of the system

outlined above.

4

This thesis project is concerned with the design of the Functional

Tester. The interconnection of the parametric test instruments and

the development of the controlling software has been developed using

the ACUTEST test language as a seperate project. This thesis

project involved the design and implementation of a suitable

functional tester at an affordable price. The following tester

capabilities were desired:

1) 1OOKHz - 1OMHz TEST FREQUENCY

2) 64 BIT TEST VECTOR WIDTH

3) 2KBytes TEST VECTOR DEPTH

4) FOUR USER PROGRAMMABLE CLOCKS

5). TEST VECTOR INPUT USING

HIGH-LEVEL LANGUAGE

6) TEST (RESULTANT) DATA MANIPULATION

USING HIGH-LEVEL LANGUAGE

To achieve these goals, a functional tester was designed which

receives test vector data from a Hewlett Packard HP9920A computer

and loads this data into buffer memory. The test vector data file

is created using a program written in PASCAL on the HP9920A

computer, which provides "user-friendly" input of the test vectors

by the user. For example, data is entered in binary, hexadecimal,

or decimal format. Several inputs of the same number, or group of

numbers are entered using a multiplier. Ten instances of the

pattern A5A5H followed by 5A5AH are entered by: (lO(A5A5H,SA5AH)).

Sequential inputs are entered by giving the start and end values.

To enter an address count from 0 to 2047 is done by entering:

[OOH..7FFH]. The data is transferred over a general purpose

input/output (GPIO) bus with a direct memory access controller. To

achieve the high transfer rates desired and to be compatible with

the GPIO bus, the Functional Tester-GPIO interface uses a 16-bit

microprocessor, the Intel 8086. The functional tester provides

2Kx64bits of RAM to buffer the test vectors, along with 2Kx64bits of

RAM to store the test results. Another 2kx8bits of RAM is provided

to buffer the direction bits which allow directional control of the

64 data lines in groups of eight during each cycle of the test.

Registers are provided to hold the information for the programmable

clocks and control signals. After all the data is down-loaded,

which includes operational information such as test clock frequency,

programmable clock pattern information, data direction, etc., the

tester initiates the test using "random-logic" control circuitry to

achieve the desired high speeds. The random-logic control circuitry

uses a base oscillator at 20MHz to derive a master test clock

programmable from 00KHz to 1OMHz. The random-logic circuitry

includes the write signal used by the resultant data RAM, along with

the output data strobe pulse which strobes data from the test vector

RAM into the output pipeline registers. Six clocks were also

generated which can be programmed with low-to-high and high-to-low

transitions occuring anywhere within the test cycle desired in 50

nanosecond increments. Two of the programmable clocks are used by

the functional tester, with one clock used as the test vector data

19

control signals to/from the 8086. The address decoding necessary

for the input and output ports is also included. This backplane

interface circuit is shown in Appendix B.

Memory Boards

The purpose of the two memory boards is to buffer data prior to

transfer to/from the HP9920A computer. The HM-65162S-9 2048 x

8bits, or 2KBytes, CMOS random-access memory (RAM) elements are used

with read and write cycle times of approximately 55-nanoseconds.

One memory board, "MEMORY BOARD I", is used to hold the test vectors

transferred from the HP9920A, and the other memory board, "MEMORY

BOARD 2", is used to hold the resultant test data. MEMORY BOARD 1

also contains 2KBytes of RAM for the direction bits used during the

test. During the transfer-phase between the functional tester and

the HP9920A computer, the memory appears to the 8086 to be 8Kx16bits

on MEMORY BOARD 2 located at addresses EOOOOH - EIFFFH, and

lOKxl6bits on MEMORY BOARD 1 located at addresses FOOOOH - FIFFFH,

with the extra 2K being the direction bits. During the test-phase,

the data buffer memory on the two memory boards is configured as

2Kx64bits on each memory board, with an extra 2Kx8bits on MEMORY

BOARD I for direction control.

The circuits for the two memory boards are presented in Appendix B.

The block diagrams of the two memory boards are presented on the

18

interface to the Hewlett Packard GPIO bus, and to interface to the

functional tester backplane. The interface to the GPIO bus was

required to allow 16-bit transfers over two seperate 16-bit buses

using two Intel 8255 input/output interfaces. This interface routes

the GPIO timing interface signal- PCTL and PFLAG to the correct

control inputs of the interface 8255's, depending on whether an

input or an output operation is in progress. Both Port A's of the

two 8255's are used for inputting data from the Hewlett Packard

computer to the functional tester, and both Port B's are used for

outputing data from the functional tester to the Hewlett Packard

computer. Port C of both 8255's is used as a control port for data

transfers. Port A and Port B of 8255-Pl are the low-order bytes.

The GPIO signal "I/0'" which is high for data transfers to the

Hewlett Packard computer and low for transfers in the opposite

direction, is used to route the necesary control signals. This

interface circuit is shown in Appendix B. As shown, pull-up

resistors are required on all the GPIU lines. This circuit does not

present all of the Intel 8086 Single-Board Computer circuit since

this is presented in the Intel MCS-86 User's Manual.

The backplane interface board is required to route the 8086 control,

data, and address signals to the backplane of the functional tester

module, and provide the necessary buffering. The board also

includes address decoding for the two memory boards (due to a lack

of space on the memory boards) and input and output ports for

17

some cases impossible to obtain in CMOS, and were prohibitively

expensive. The design is included in Appendix B, since future

availability of support circuitry for the 80C86 would make the

design feasible. The other reason for not implementing the design

involved time. As already indicated, parts to support the design

using an 80C86 microprocessor were impossible to obtain, and

obtaining a non-CMOS 8086 microprocessor, along with its support

circuitry, was too expensive and required too much lead time. The

alternative to this problem involved the use of an Intel SDK-86

System Design Kit which was available, and included monitor software

to aid in development.

As previously discussed, the Intel SDK-86 was chosen due to time

considerations, and ease in software development. Although no 8086

assembler was available, the Intel SDK-86 did allow examining memory

locations, and performing input/output operations from the keypad.

The discussion of the 8086 software written, and subsequently burned

into EPROM, will be presented in Chapter III. The hardware and

software documentation for the Intel SDK-86 is contained in the

following manuals, which will be referenced in the discussion which

fol lows.

1) SDK-86 MCS-86 System Design Kit Assembly 1'anual

2) MCS-86 User's Manual

3) 8086 Assembly Language Programming Manual

The Intel 8086 Single-Board Computer required interface circuits to

• .L "- ">. - - -L- > - .-' -, --'-.-. --- ,..- - - ' ..- ., -- - . - . , - , " - , . .
" " - - - - ,-.- .- ''m " "" "" - - "" - - n - ' " T i'', .:- .,- -

16

microprocessor design involved address space. The microprocessor

used in the design (the Motorola 6800) allowed a total of only

65536bytes - 64KBytes - of address space. The original design

criteria was for 4096 x 64bits, or 32KBytes, of output data memory,

and 32KBytes of input data memory, for a total of 64KBytes of data

memory, which resulted in no space for the program, or for registers

used to hold test control information. For these reasons, a 16-bit

microprocessor was deemed necessary for the interface and control

board.

Several circuits were considered for the interface and control

scheme, based on the Intel 8086 and the Motorola 68000

microprocessors. The Intel 8086 microprocessor was chosen for

several reasons. One of the primary reasons for choosing the 8086

was personal experience in interfacing and programming the 8086

versus the 68000. Another important reason was availability of the

8086 over the 68000. A CMOS version of the 8086 - the 80C86 - was

available from Harris Corporation as a donation, which made the 8086

highly desirable from a monetary standpoint. An interface circuit

was designed using the 80C86, but was not implemented due to a

problem obtaining supportive hardware for the 80C86, and time

considerations. Harris Corporation donated the 80C86 microprocessor

and scme support circuitry, but was not able ,due to manufacturing

reasons, to furnish all of the parts required to support the 80C86

in the application circuit. The additional necessary parts were in

• -- pD ,

15

Computer Interface

The GPIO interface controls data transfers from the Hewlett-Packard

HP9920A computer to the local memory of the functional tester. The

interface is required to provide memory address and control signals

to the local memory, as well as interface control signals to the

GPIO bus. The Hewlett Packard GPIO bus is controlled by a

direct-memory access (DMA) board which can transfer data at rates up

to 750KHertz, or 750,000 transfers per second. This transfer rate

was desired for the interface control circuit.

Based primarily on price considerations, design and testing was

performed using an 8-bit microprocessor and supportive DMA to

transfer the data. A design was produced which appeared feasible,

but was later discarded for several reasons. Even though the GPIO

controller could be configured to transfer 8-bit data, transferring

16-bit data was required in order to achieve the transfer rates

desired. The extra control logic necessary to transfer 16-bit data

using an 8-bit microprocessor was prohibitive for implementation

reasons, and caused inter-communication problems between the

microprocesor and the Hewlett Packard computer. This communication

was necessary to provide varying moces of operation of the

functional tester without excessive control requirements from the

functional tester operator. Another problem with the 3-bit

.-:',--.'1. ' ..) -:. - -'--.----1.).. .:..- -.-. ..-.-. - . . .- " --- . '.. - - .
,, ,, :.,,..-i'.,,.,. .,.,,..-,-. i i h -

-
." " .-..-- - -. ". ". : _: ' : ,

14

to synchronize the programmable clocks with the master clock. The

"STBOUT" signal strobes data from MEMORY BOARD I into the pipeline

registers on the DUT INTERFACE board. This sigal determines the

time data is available to the device-under-test, and is generated as

soon as data is available from the RAM on MEMORY BOARD 1. The time

delay from the master clock low-to-high transition to data valid at

the device-under-test includes the propagation delay of the

SN74LS163 address counter required to generate a valid address to

the RAM; the propagation delay of the RAM from address valid to

valid output; and the set-up and propagation delay of the SN74HC373

output register. From the device specifications, this time is

approxiately 80-nanoseconds. As can be seen from the timing

diagram, the functional tester can still be operated at speeds up to

IOMHz since the output data is valid at the device-under-test from

the high-to-low transition of the STBOUT signal until the next

low-to-high transition of STBOUT. The time during which output data

is actually enabled from the output latches to the device-under-test

is a programmable signal - "PDOUTEN" - which is programmable in

50-nanosecond increments. The time during which input data from the

device-under-test is written into the input latches is a prgrammable

signal - STBIN- which is programmable in 50-nanosecond increments.

These control signals, along with the 64-bits of output test data,

enable a user to fully test the fuctionality and timing

characteristics of a device, such as set-up time, propagation delay,

etc..

....................

13

CLK2 0

MASTER
TSTCLX

BP

STBOUT

OUTPUT
DATA

Fiqure 2: Timinq Diaqram

12

ability to test the memory. When the functional tester is in the

test mode, the 8086 signals are removed from the tester module bus

so that random-logic circuitry can generate the address and control

signals at a higher rate of speed than possible with the 8086.

During test mode, the address and control signals are provided by

the TEST-PHASE CONTROL board. A programmable-frequency clock on the

TEST-PHASE CONTROL board is used as the master clock, and generates

the write signal to the RAM on MEMORY BOARD 2, the STBOUT signal to

the output pipeline regsters on the DUT INTERFACE board, as well as

driving a 12-bit counter for the address to all the RAM on both

memory boards. During each cycle of this master clock, test vector

data and directional data are read from the RAM on MEMORY BOARD 1

into output pipeline regsters on the DUT INTERFACE board, and data

contained in input pipeline regsters on the OUT INTERFACE board is

written to the RAM on MEMORY BOARD 2. The timing diagram shown in

Figure 2, Timing Diagram, on the followig page, illustrates the

timing relationship between the various control signals for a test

frequency of IMHz. The master clock, programmable clocks, and all

control signals are derived from a 20MHz oscillator. The master

clock is programmable from 100KHz to 1OMHz, and is used to initiate

the other signals. The high-to-low and low-to-high transitions of

the programmable clocks can be programmed individualy in

50-nanosecond increments anywhere within one cycle of the master

clock; or can be programmed to occur once every other cycle of the

master clock. The "BP" signal generated by the master clock is used

6-.....................................

11

COMPONENT SIDE CIRCUIT SIDE
PIN FUNCTION PIN FUNCTION

LOGIC 1 P5V 2 P5V
POWER 3 GND 4 GND

BUS 5 N5V 6 N5V
7 D7 8 D15

9 D6 10 D14
11 D5 12 D13

DATA 13 D4 14 D12

BUS 15 D3 16 D11
17 D2 18 D10
19 D1 20 D9
21 DO 22 D8
23 A8 24 M/IO'
25 A7 26 A15
27 A6 28 A14

ADDRESS 29 AS 30 A13
BUS 31 A4 32 A12

33 A3 34 All

35 A2 36 A10
37 Al 38 A9
39 A17 40 MSELl'
41 A16 42 MSEL2'
43 AO 44 TSTEND'

CONTROL 45 WE' 46 RD'

BUS 47 TSTCLK 48 TSTSTRT
49 TSTMD' 50 TSTMD
51 * 52 *

AUX 53 AUXGND 54 AUXGND
POWER 55 P12V 56 N12V
BUS

TABLE 1: BUS PIN ASSIGNMENT

p

pJ

.i
29

"'* ."-° .°°°; - . ."o o° • - • ,AA-" ' -.

• .- -. • . ° • , _ . ° .° .. _

10

entity from the other boards in the system. The two 64-pin ribbon

cables labeled "JA" and "JB" connect the Intel single-board computer

to the backplane of the module containing other Functional Tester

boards through the "BACKPLANE INTERFACE" card. The module and

wire-wrap plug boards used to fabricate the Functional Tester are

"STANDARD BUS" size; however, the "STANDARD BUS" backplane pin

asignment is not used. Table 1: Bus Pin Assignment, on the

following page, shows the pin assignment used. The standard pin

assignment is not used because a 16-bit data bus and a 20-bit

address bus are required. The STANDARD BUS size module and plug

boards are used because the typical module size for 16-bit data bus

applications was considered too large to be placed in close

proximity to the probe station, which may be required for the

functional tester in order to test integrated circuits on silicon

wafers. The BACKPLANE INTERFACE card also provides an input and an

output port for control signals to/from the 8086 used to initiate,

and determine the end of, the test. The address, data, and control

signals from the 8086 are connected directly to the backplane of the

tester module through buffers when the functional tester is in

transfer mode. While in transfer mode, the 8086 transfers test

vectors and directional control data to MEMORY BOARD 1; test

frequency control data to the TEST-PHASE CONTROL board; and

programmable clock control data to the PROGRAMMABLE CLOCKS board.

In this mode, the 8086 can write or read any of these locations in

addition to the memory locations on MEMORY BOARD 2, and may use this

• - --.. ,...........,.,.. .• ,,....- '. ,.,.

9

-0-

a " u I A I a I

Figure 1: Funct:ional Tester Syst~em

A

- C ' " " . . .Z" '

8

CHAPTER II.

Hardware Design

A system configuration diagram for the functional tester is

presented in Appendix B, and also in Figure 1: Functional Tester

System, on the following page. As can be seen from the block

diagram, the system can be broken into sections pertaining to

functionality. Each section will be discussed separatly, along with

the interaction of the sections. The first section consists of the

computer interface, interfacing the functional tester with the

HP9920A GPIO Bus. This interface section also contains the control

logic which initiates the test, and takes over control when the test

is completed. The next section consists of the memory boards, with

one memory board for the test vector data, and one memory board for

the resultant data. The memory boards also contain the

address-decoding. The next section discussed is the programmable

clocks and test-phase control circuitry. The final hardware section

includes the pipeline registers and device-under-test (DUT)

interface.

The system configuration diagram shown in Figure 1 relates very

closely to the physical, as well as the logical, configuration of

the system. As shown, the GPIO interface cable connects directly to

the Intel SDK-86 single-board computer, which is a separate physical

e

" ~~~~~~. -.- " .- J ~" ," i '"" " " " "" .' ' ' ",'" ' i,

7

Also, a computer (the Hewlett Packard HP9920A) with a high-level

language is used for entLr~ng the test vectors and processing the

resultant data. Pipelining is used during the test phase so that

the speed of the system is not completely dependent on the access

time of the memory elements used for buffer memory. The maximum

frequency of the functional tester is determined by the memory

access time of the RAM plus the data setup and propagation delay of

the output pipeline registers. High speed CMOS RAM is used with a

memory access time of approximately 55-nanoseconds, and high speed

CMOS pipeline registers are used with a combined data setup and

propagation delay of approximately 15-nanoseconds, indicating the

maximum possible operating speed for the functional tester to be

approximately 14MHz.

0

e(

..........................

6

output enable from the output pipeline registers, and the other

* clock used as the resultant data input strobe to the input pipeline

registers. The other four programmable clocks are available to the

user for functions executed during the test. The random-logic

* control circuity indicates the completion of the test, at which time

the resultant data, which had been stored in buffer memory, is

up-loaded to the HP9920A for processing. The PASCAL program on the

* HP9920A places this resultant data into a file, after sorting out

all of the non-relevant data. A hardcopy may be obtained of the

test vectors and resultant data on a printer.

I

This design approach to a functional tester for laboratory use

differs from --and improves upon-- previous methods, in that

* random-logic control circuitry is used during the test phase to

provide increased operating speeds over systems which use

microprocessor-control for the complete test. Systems using a

* microprocessor to control the complete test can operate only as fast

as the execution of a memory fetch and output write followed by an

input read and memory write. A maximum test frequency of

approximately 125KHz for an Intel 8086 operating at 5MHz is

achievable, and this would allow only 16-bit test vectors. Test

vectors of 64-bits would require four of the previous cycles for

each test cycle, indicating a maximum test frequency of

approximately 30KHz for the 8086 operating at 5MHz.

............... ..-..-..

20

following two pages, in Figure 3: Memory Board 1 and Figure 4:

Memory Board 2, for easier reference. On MEMORY BOARD 1, the write

signal to the RAM is inhibited during test-phase by the control

signal "TSTMD". On MEMORY BOARD 2, the read signal is inhibited

during test-phase by TSTMD; therefore, during test-mode MEMORY BOARD

1 is read-only memory, and MEMORY BOARD 2 is write-only memory. The

data from MEMORY BOARD 1 is valid as soon as the address is valid,

plus the RAM latency time. New data is written into MEMORY BOARD 2

as soon as the new address is valid. The timing sequence of the

read and write cycles for the two memory boards is included in the

system timing analysis presented in the introduction of this

chapter.

Since the 8086 address space is not greatly utilized, more memory

boards could easily be added to increase the depth or the width of

the test vectors. To increase the depth, memory boards should be

added in pairs, such that going from 2Kx64bits to 4Kx64bits would

include the output data as well as the resultant data. Increasing

the width of the test vectors could be done for the output data

only, input data only or both as required. In other words, the test

vector memory buffer area could be increased from 2Kx64bits to

2Kx128bits by adding one memory board, with the resultant data

memory buffer area remaining at 2Kx64bits. Another possible

addition to the memory boards circuit would be a 2Kx64bit memory

board to contain the direction bits, which would replace the

. . .

21

U US

ca*

Figure~ ~ ~ ~ 3:Mmr or

* ~~~............~~~~....................

22

I. g. Ill
z .

#t-771

It-

Fi ur 4:M m r o rI

I-. 6!

23

0 2Kx8bits RAM on MEMORY BOARD 1. This would allow each bit to be

programed as either an input or an output during each cycle of the

test, rather than the direction of 8 bits being programmed together,

as is presently done. This would necessitate changing the OUT

INTERFACE board to use different elements than the 8-bit buffers

presently used.- A device such as an AND gate with tri-state outputs

* could be used to control each of the 64 output bits. This would

require 16 of the AND gate chips, assuming four 2-input gates per

chip; however, sixteen of these 14-pin chips would not require much

more room than eight of the 20-pin chips presently used.

Programmable Clocks

The PROGRAMMABLE CLOCKS board provides six programmable clocks, with

four of the programmable clocks (PCLK1 - PCLK4) for use by the user

* as desired, and the other two programmable clocks used for control

signals during test phase by the OUT INTERFACE board. All six of

the programmable clocks are connected via shielded coaxial cable to

the OUT INTERFACE board. The purpose of the two programmable

control signals (PDOUTEN and STBIN) is described in the discussion

of the DUT INTERFACE board operation. The PROGRAMMABLE CLOCKS board

* contains a 20MHz oscillator which is used to produce the six

programmable clocks, and is also connected via shielded coaxial

cable to the TEST-PHASE CONTROL board for use in producing the

programmable frequency master test clock.

.. '9 . .,,L,. ';,,,,m ~ :'"'- - """"" "" """""""""""""""""""•"""-" ' " " ' ' - " ' - - -

24

Although the six programmable clocks have different purposes, they

are all generated in the same manner; therefore, this discussion

will describe only one of the six. The schematics for the

programmable clocks is presented in Appendix B. The block diagram

is shown in Figure 5: Programmable Clocks, on the following page to

6 aid in this discussion. As indicated by the block diagram, the

20MHz oscillator is used to drive two 74LS161 4-bit binary counters.

Only seven of the eight bits of the counters are used, which allows

a count range of 0-127 in 50nanosecond steps. The two counters are

reset by a control signal, BP, which is generated on the TEST-PHASE

CONTROL board at the beginning of each cycle of the master test

* clock; therefore, the two counters always indicate the count in

50nanosecond increments after the low-to-high transition of the

master test clock. This 7-bit count is connected to inputs BO-86 of

* an AM25LS2521 16-bit comparator. Although not shown on the block

diagram, the high-order bit of the "A" and "B" inputs (A7 and B7)

are connected together since they are not used. The 7-bit count is

* compared by the comparator to the 7-bit output of one of two

latches. Seven of the output bits (QO-Q6) of both latches are

connected to the inputs AO-A6 of the comparator, with only one latch

enabled at a time. One latch contains the count for the low-to-high

transition of the programmable clock, and the other latch contains

the count for the high-to-low transition of the programmable clock.

* These two latches are loaded during transfer phase from the Hewlett

ei

...................................

25

SS

.lI.

! - K

- *.

U N

V N U a
V N C

I a a-L . -

- - -.-.
C

,.., ., , ' , ' .' '. . .]. .: , . . ., , , -,,, i .,giJ i i i " : " --- ::. - 0.;_: -- ;-':' . ;;.;;....;. - ;" ..

26

Packard 9920A computer. The address decoding for the latches is

done on the TEST-PHASE CONTROL board, and the strobe signals are

passed over via ribbon cable. The high-order bit of the two latches

is used to determine whether the programmable clock will occur each

cycle, or every other cycle, of the master test clock. This is

accomplished with an AND gate which has the high-order bit of the

two latches as one input, and the master test clock divided by two

as the other input. The output of the AND gate enables the

comparator. Whether the programmable clock low-to-high or

high-to-low transition occurs first is user programmable according

to which latch contains the lower count. When the comparator

detects a match between the 7-bit count and the output of the latch

presently enabled, a pulse is produced at the output of the

comparator which clocks a 74LS112 JK flip-flop. The 74LS112 is

connected in toggle mode so that a clock input causes the flip-flop

to toggle. This produces a transition of the programmable clock,

and enables the other latch, which contains the count for the

opposite transition of the clock. The output of the 74LS112 is

connected to a 74LS128 50-ohm coaxial cable driver which drives the

coaxial cable connected to the OUT INTERFACE board. Once a new

count is loaded into the latches during transfer phase, all of the

programmable clocks are free running at the new set-up, and are

valid when the test-phase begins.

The operation of the programmable clocks was satisfactory for a

-_ " ." -. .- . . ; . --.. -;.-..- .. .-, .L -- .L. .? / / -L L ,? i -: L I- L,. .

27

clock programmable in 50nanosecond increments; however, a clock

programmable in smaller increments, such as 10nanoseconds or less,

was desirable for a functional tester that operated at speeds up to

IOMHz. A very-large-scale integrated (VLSI) circuit was considered

which would use an internal clock of 10OMHz or greater to produce a

clock programmable in lOnanosecond, or smaller, increments. In

order to be programmable over the entire cycle at speeds as low as

1OOKHz, the 10nanosecond programmable clock would require a count

range of 0-1000, or a 10-bit counter; however since typical uses of

these programmable clocks would be in the higher frequency ranges,

an eight-bit count, which would allow programming of

O-2560nanoseconds (full range at 400KHz), would be adequate. The

VLSI circuit would require data and control lines to input the

low-to-high and high-to-low counts, and a strobe pulse input

indicating the beginning of each cycle. A circuit similar to the

ones on the PROGRAMMABLE CLOCKS board could be used, or a separate

loadable counter could be used for each transition of the

programmable clock. This accuracy for the programmable clock is

required in order to run the functional tester at its desired 1OMHz

test frequency, and should be the first major modification performed

on the existing design.

Test-Phase Control

The TEST-PHASE CONTROL board provides three functions, the first .

- ' ' '- -,) ' . . " , ' -. , . .. , - ,. ., . . , '. . ., '.- .-" .' . -. .,.- . . - .-. ' --.. . .- ..' .. , -. , ,., ---.-..- ,
. . ..,.."m"bd "'' m " .nmdm .nnmim nnl i ll ~ lllin~l N t , ,_, ,

28

used during transfer-phase, and the other two are used during

test-phase. The first function is the address decoding for the

programmable frequency master test clock latch located on the

TEST-PHASE CONTROL board, and the programmable clock latches located

on the PROGRAMMABLE CLOCKS board. The second function is the

generation of the programmable frequency master clock and the other

control signals used during test-phase. The third function is the

generation of the address for the RAM located on the two memory

boards. The schematics for the TEST-PHASE CONTROL board are located

in Appendix B.

The first page of the TEST-PHASE CONTROL schematics located in

Appendix B shows the address decoding which is used during

transfer-phase to load the latches used for the programmable

frequency master clock and the six programmable clocks. An

SN74LS138 3-to-8-line decoder is used to generate the device select

pulses. The outputs of the SN74LS138 are connected to SN74LS04

inverters since the strobe inputs of the SN74LS373 latches require

high-true signals. The SN74LS138 produces device select pulses for

I/O addresses AOOOH-AOOEH, with each device select pulse

representing 16-bit devices. For example, the master test clock

latch address is AOOOH/AOOlH; the latches for the first programmable

clock (PCLK1) are located at addresses AOO2H/AOO3H; and so forth for

the other programmable clocks.

29

The second page of the TEST-PHASE CONTROL board schematics located

in Appendix B shows the address generation during test-phase for the

RA4 located on the two memory boards. Three SN74LS163 4-bit binary

counters driven by the programmable frequency master-test-clock are

used to generate the address lines. The address counters are

enabled by the "TSTSTRT" control signal generated at the 8086 output

port located on the BACKPLANE INTERFACE board. Two AM25LS2521

comparators are used to determine when the first eleven of the

counter's twelve outputs are high, indicating that all 2KBytes of

the RAM have been accessed, and stop the counters. The signal used

to stop the counters is also used as the end-of-test indicator

(TSTEND) to the 8086. The outputs of the address counters are

connected to the address bus through two SN74LS241 octal three-state

buffers, so that the address counters are only connected to the

address bus when the functional tester is in test mode.

The third page of the TEST-PHASE CONTROL board schematics located in

Appendix B shows the circuitry used to produce the control signals

used during test-phase. This includes the programmable-frequency

master-test-clock (TSTCLK), the begin-phase pulse (BP), the

master-test-clock divided by two (TSTCLK/2), the output data latch

strobe (STBOUT), the RAM write signal (WR), and the RAM read signal

(RD). The purpose of the begin-phase (BP) and test clock divided by

two (TSTCLK/2) signals are included in the discussion of the

PROGRAMMABLE CLOCKS board. The purpose of the output latch strobe

30

signal is included in the discussion of the DUT INTERFACE board.

The purpose of the RAM read (RD) and write (WR) signals are included

in the discussion of fMEMORY BOARD I and M4EMORY BOARD 2. This

discussion will only present how these signals are generated.

Two SN74LS163 4-bit binary counters are used to generate the

programmable frequency master test clock. The 20MHz clock generated

on the PROGRAMMABLE CLOCKS board is used to clock the two counters.

The two counters are loaded with the data contained in the test

clock SN74LS373 latch at the beginning of each cycle. The counters

count up from that value until they reach a count of 255, or all

ones on their outputs. This causes the ripple carry output of the

high-order counter to make a low-to-high transition, and remain high

for one clock period (50nanoseconds). This ripple carry output is

used for the master test clock, and re-loads the count data into the.

two counters. The formula for the test clock frequency based on the

count value loaded into the latch is given by: F =

20MHz/(255-COUNT+I). This formula is transparent to the user;

however, since the high-level language on the Hewlett Packard 9920A

computer handles calculating this value, and ensures that a test

frequency is not picked which cannot be generated.

The master test clock is used to drive the test-phase address

counters, and to generate the remaining test-phase control signals.

The test clock divided by two (TSTCLK/2) signal was generated by

'" "-.- ".., ...:,.-..,, .,w,'..,,,...,.="-,,w~,,,' ,'.,...,,€" , .T. " " "" ""."",....................."...."..-.-.....-"......"" "" """

31

connecting the master test clock to the clock input of an SN74LS74

which is configured to toggle as shown on the schematics. The

begin-phase pulse (BP) was generated by connecting the master test

clock to the clock input of an SN74LS74 with its data input ("0")

connected high. Each time the flip-flop received the clock its "Q"

output would go high and its "Q'" output would go low. The output

"Q'" was connected to the clear input "CL" such that as soon as "Q'"

went low, the flip-flop was cleared, causing "Q" to go back low, and

"Q'" to go back high. The begin-phase signal was taken from the

"Q'" output, making it a low-true pulse, which occured at the start

of each cycle of the master test clock, and lasted for the duration

of the SN74LS74 high-to-low propagation delay. The SN74LS74

high-to-low propagation delay was specified as typically

13nanoseconds, with a maximum of 25nanoseconds, but was measured as

20nanoseconds. This time was satisfactory since the begin-phase

signal was connected to the asynchronous clear of the SN74LS161

counters on the PROGRAMMABLE CLOCKS board. The output data strobe

signal (STBOUT) was generated in the same fashion as the begin-phase

signal, except the "Q" output of the SN74LS74 was used to allow for

a high-true signal, and the clock source was different. The

low-to-high transition of the inverse of the master test clock,

which occurs 50nanoseconds after the low-to-high transition of the

uninverted master test clock, was used to clock the strobe out

flip-flop to cause the signal to appear later in the cycle, which

allowed the test-phase address counters to stabilize, and the data

A..,...:.,x.-x;..,. ,..7 ,

32

out of the RAM on MEMORY BOARD I to become valid. The duration of

the output data strobe signal was the same as for the begin-phase

signal, which was the propagation delay of the SN74LS74, and was

adequate for the strobe to the high-speed CMOS latches used on the

DUT INTERFACE board. The write signal to the RAM on the memory

boards was generated using the same clock input as the output data

strobe signal, which was the low-to-high transition of the inverse

of the master test clock. The duration of the write signal was

generated by the gates inserted between the "Q'" output and the

clear input "CL" of the SN74LS74. The required minimum duration of

the write pulse to the H4-65162 RAM according to the specifications

was 35nanoseconds. The propagation delay of the SN74LS74 of

approximately 20nanoseconds, plus the propagation delay of the

SN74LS32 of appoximately 15nanoseconds, plus the propagation delay

of the SN74LS04 of approximately lOnanoseconds produced a write

pulse with a duration of 45nanoseconds. The "Q'" output was used

for the write signal to produce a low-true signal. The read signal

was tied to ground during test-mode, which enabled the output of the

RAM on MEMORY BOARD 1 at all times during the test.

The six programmable clocks are synchronized to the

master-test-clock by use of the begin-phase (BP) control signal as

indicated above. After this circuit was already implemented, the

begin-phase control signal position was discovered to be in error.

Since the functional tester output data is available to the

...............

L- ''L '--. ..'..-.... ..-. .-. ... ,. ..1--.' .- ' .' .-.- ".. .'...- --. .' .

33

device-under-test as a function of the output data strobe (STBOUT)

signal, all of the programmable clocks should be synchronized to the

STBOUT signal. This means that future modifications to the system

should replace the BP signal with the inverse of the STBOUT signal.

Also, the input to the flip-flop which generates TSTCLK/2 should be

the STBOUT signal instead of the master test clock. This means that

from a user's point of view, the STBOUT signal is the master clock,

even though a different frequency-programmable master test clock is

really being used to synchronize the entire system.

As indicated, the control signals produced on this board were

adequate for their purposes; however, they were impossible to adjust

by very small amounts (i.e. 5-10nanoseconds) to produce a more

accurate system. The VLSI circuit which would generate a

programmable pulse based on an input strobe signal, as mentioned in

the discussion of the PROGRAMMABLE CLOCKS board, would be very well

suited to more accurately generate these control signals, and should

be used when the programmable clocks are modified.

Device-Under-Test Interface

The DEVICE-UNDER-TEST INTERFACE (DUT) board is located physically

seperate from the module containing the majority of the boards in

the system so that it can be placed near the probe card when

integrated circuits on silicon wafers are tested. The interface

48

indicated by the multiplier into the data file. The UNASSEMBLE

function may iterate if multipliers are located within multiplier

strings. The CREATE module keeps track of the number of values

input for each data group, and issues a warning if too many values

are nput for any one data group, and re-enters the values for that

group.

The purpose of the CLOCKS module is to enter the test frequency and

positions of the programmable clocks using graphics on the HP9920A

monitor to allow the user a better understanding of how to program

the clocks. The CLOCKS module first inputs the test frequency. The

CLOCKS module then calls a function called PCLOCKS six times, once

for each of the six progranable clocks. The PCLOCK module draws a

20MHz base-frequency clock; the tester-master-clock (at the

frequency previously input); and a programmable clock with default

low-to-high and high-to-low transitions. The user is allowed to

independently move the low-to-high and high-to-low transition edges

in 50nanosecond increments until the desired programmable clock

waveform is achieved. The user then indicates acceptance of the

clock, and the next programmable clock is drawn. After all six of

the programmable clocks have been input, the module CLOCKS calls a

function named DRAWALL which draws the 20MHz base oscillator, the

master-test-clock (at its programmed frequency), and all six

programmable clocks (at their programmed values). The user is then

given the option to accept the waveforms or reprogram all of the

" - > . . .- -. -. -. . -':- L .i - i . _-.--i 'i . .-i - - ". ' - - -' - " - . .- ". ' -

47

may have an appended "D", or no appended letter (ex: 9086D or 9086).

The module allows sequential data to be entered by giving only the

first and last values. For example, if a test requires an address

output which varies from 0 to 2047, the data could be entered as

"[OOH..7FFH]" which would enter 2,048 values. The module allows

repeated data to be entered with a multiplier. For example, to

enter a count from 0 to 15 and then from 40 to 49, fifty times, the

following could be entered: "(50([OOH..OFH],[40..49])" which would

enter 1,300 values. Repetitions within repetitions are also

allowed, such that entering fifty vectors which includes ten OFH

values followed by a count from 0 to 9 could be entered:

"(50(10(OFH),[O..9])". The CREATE module inputs a value and checks

the leftmost character of the value for a "(" If the left

character is not a "'(", the module checks for a leftmost character

of "[". If the leftmost character is not either of these, the

CREATE module calls a function called INTGD which accepts a binary,

hexadecimal, or decimal string and returns an integer. This integer

is written into the data file, and the program prompts for a new

value to be input. If the leftmost character is a "[", the CREATE

determines the start and end values, and calls INTGD to transform

these values into integers. The values from the start integer to

the end integer are then writen into the data file. If the leftmost

character is a "", the CREATE module calls a function called

UNASSEMBLE. The function UNASSEMBLE determines the multiplier for

the string and writes the integer values for the number of times

46

test repeatedly while varying the test frequency and programmable

clocks. If the same programmable clocks were not to be used again,

the program calls the CLOCKS module to input the new clock values.

After the test vector data file is established, either by creating a

new file or determining which old file to use, the MAIN program

calls the TRANSFER module which transfers the test vectors and

control data to the functional tester, and transfers the resultant

data from the functional tester to the HP9920A computer. After the

resultant data had been loaded, the MAIN program-determines if a

listing of the results is desired, and if so, whether the listing

should go to the monitor or to the printer. If a listing is

desired, the MAIN program transfers a listing to the desired device.

The purpose of the CREATE module is to allow "user-friendly" input

of the test vectors. Since the type devices tested by the

functional tester are expected to vary a great deal, no attempt was

made to create a module which would compile a higher level language

to create the test vectors. This means that the test vector data

must be hand-assembled --or "microcoded"-- by the user. The CREATE

module does ease the efforts required to input the test vectors. To

describe the operation of the CREATE module, a description of the

abilities of the module will first be presented. The CREATE module

allows data to be input in binary, hexadecimal, or decimal format.

Binary data must have an appended "B" (ex: 01011011B); hexadecimal

decimal data must have an appended "H" (ex:OFOAEH); and decimal data

...

~ .~* . --

45

functional module without affecting the other modules. The first

function module is the CREATE function which allows input of the

test vectors to be used in the test. The second function module is

the CLOCKS function which allows graphical input of the positions of

the programmable clocks to be used in the test. The third

functional module is the TRANSFER function which transfers the test

data to the functional tester, and transfers the resultant data from

the functional tester to the HP9920A. The PASCAL program and

accompanying flowcharts are presented in Appendix D.

The MAIN module is the driver for the other functional modules. The

program first determines whether the test vector data file already

exists. If the test vector data file did not exist, the program

inputs information to determine how many test vector words will be

input, and then calls the CREATE module. After the test vectors are

entered, the program again calls the CREATE module to input the

direction words. The MAIN program sets a boolean variable

"DIR WRD IN" true or false before calling CREATE to differentiate

between test vector inputs and direction word inputs. After

inputting the test vectors and direction words, the MAIN program

calls the CLOCKS module to input the values for initializing the

functional tester programmable clocks. All of these values are

placed in one test data file. If the test vector data file already

existed, the program determines whether the same programmable clocks

are to be used again. This is included to allow running the same

7 ,

44

have to allow for memory partitioning on the memory boards if all

the memory was filled every time. After transfering the test

vectors and direction control words, the control program inputs

seven 16-bit words used for the functional tester programmable

clocks. Once all the values are input, the control program changes

the functional tester to test mode and initiates the test by

outputting the correct bits to Output Port 0. After initiating the

test, the control program enters a loop reading Input Port 0 and

waiting for an indication that the test has ended. At the end of

the test, the control program sets the functional tester mode to

transfer, and initializes the data segment and index registers to

point to the start of the RAM on IEMORY BOARD 2, which begins at

address OEOOOH. The control program then outputs 8,192 (8K) 16-bit

resultant data words to the HP9920A computer. The high-level

program on the HP9920A takes care of selecting the true resultant

data from the data words which are transferred. After transferring

all of the resultant data words, the assembly language control

program jumps to the start of the program beginning (physical

address OIOOH) to start the process over again for the next test.

PASCAL Program

The PASCAL program on the Hewlett Packard HP9920A computer consists

of three major functions which are placed in three seperate modules,

along with a main driver module, which allows changes to any one

- . : - .. -. - '. . .+i -.-.) -,-+-
-.

-/ . . .,.-. .'-..........-..".+. -. . .. "-..'

43

automatically jump to the utility program upon power-up. The SDK-86

Monitor program performs several initialization routines upon

power-up, and then enters a loop waiting for keypad input. Changing

the Monitor program to jump to the utility program rather than

waiting for keypad input would have required several patches which

would be very difficult without an 8086 Assembler. Replacing the

SDK-86 Monitor PROM's with EPROM's containing the utility program

would have been simple, but would not have allowed use of the SDK-86

Monitor program, which was very useful in trouble-shooting. Based

on these considerations, the alternative, which involved manually

starting the execution of the utility program at address OFEOOOH was

reasonable.

The second assembly language program, and accompanying flowchart, is

presented in Appendix C: Functional Tester Control Program. The

program begins by initializing the PIA's, and setting the functional

tester to transfer mode. Transfer mode is set by outputting the

correct bits to Output Port 0. The control program loads the data

segment and index registers to point to the start of the RAM on

MEMORY BOARD 1, starting at address OFOOOH. The program then inputs

8,192 (8K) 16-bit test vector data words, and 2,048 (2K) 8-bit

direction data words from the HP9920A computer. The high-level

program on the HP9920A computer inserts "dummy" data words if less

than 2Kx64bits of test vector data is used. This was done to

simplify the assembly language program, since the program would not

42

program much simpler to implement. The second assembly language

program written is the program which controlls the functional

tester.

The downloader utility program and flowchart is presented in

Appendix C: Utility Program. The program first loads the data

segment and index registers to point to the destination in memory

for the program to be downloaded, which is physical address 0100H.

Address O100H is the first available space in the SDK-86 on-board

RAM. The program then initializes the peripheral interface adaptors

(PIA's) and checks for a word written in. The first word read in

from the HP9920A computer is the transfer word count used to

determine how many words will be transferred. The program then

continues in a loop: checking the status for a new word written in,

inputting and storing the word, and decrementing the count, until

all the words have been read in and the count equals zero. The

program then jumps to physical address 0100H and starts executing

the new program. This mode of operation is desirable since it

allows easy modifications to the functional tester control program,

as previously indicated, without the necessity of burning-in new

EPROM's. Other programs, such as memory test programs and other

maintenance programs, may just as easily be downloaded from the

HP9920A computer and used in trouble-shooting problems with the

functional tester. The only inconvenience with the method which

this utility program has implemented is that the SDK-86 does not

41

functional tester could include compilers for specific circits which

are tested often, such that the test vectors could be generated at

the assembly language level rather than microcode. Another

desirable modification would be the ability to automatically analyze

the results produced by the functional tester, instead of analyzing

by hand. This could be done for a specific element which is tested

often by using the "known good" method in which the test is run on a

known good element, and the results of this test are compared to the

tests of all the other elements of the same type to locate

discrepancies. Another method for automatically analyzing the

results, which could also be used to produce the test vectors, would

be an emulator for a specific circuit which would be run on a

mainframe communicating with the HP9920A.

Assembly Language Programs

Two 8086 assembly language programs were written to operate the

Intel SDK-86 used as the microprocessor control of the functional

tester. The first program is a utility program to download, and

start executing, another program from the Hewlett Packard HP9920A

computer. This program is burned into EPROM and installed in the

SDK-86. The utility program is executed when the SDK-86 is

powered-up, and downloads the program which actually controlls the

functional tester from the HP9920A computer. This method is

employed to make modifications to the functional tester control

............-. 7-......
--,--. -, -- -, -..- -, -.,..,..,,,,,:_.. . - = , , . . , ,, --.- - :T .- q '',-';-. ... ".- .---.

- -. .- -- '
.

, ' - --
.

- -' .

40

* CHAPTER III

SOFTWARE DESIGN

S

Two areas of software design were required to produce an operable

functional tester. The first was the 8086 assembly language

* programs required to operate the Intel SDK-86 which transferred data

to/from the Hewlett Packard HP9920A computer and controlled the

functional tester. Although written in 8086 assembly language, no

8086 Assembler was available, and the programs were hand-assembled.

This accounts for the lack of Assembler statements in the assembly

language programs. Although not specifically referenced in the

following discussion of the assembly language programs, all of the

references listed under the REFERENCES section which deal with 8086

programming and the Intel SDK-86 manuals were used in writing the

8086 assembly language programs. The second area of software design

was the high-level language programs written in PASCAL on the

HP9920A computer. The purpose of the PASCAL programs was to create

the test vector data file, transfer the test vectors to the

functional tester, input the resultant data from the functional

tester, and produce hardcopic; of the results. Since the circuits

to be tested on the functional tester were expected to vary a great

deal, no attempt was made to create a compiler to create the test

vectors, and the PASCAL program required the user to hand-compile,

or "mirrocode", the test data. Future modifications to the

,,...........................o_ .,. •...... ,,•,•° ,''. •. . .

39

but a 64-pin zero-insertion socket could not be found. These two

sockets allow connection of almost any standard dual-in-line

packaged integrated circuit. A ribbon cable with a header to fit

the zero-insertion socket can be used to connect to a probe card for

use in testing integrated circuits on silicon wafers.

.:. :..,: .-. ,L. - -.._,.. .,.-.-...,. ,........... ,..... ,,

38

would allow for the sixty-four data lines and eight direction lines

from MEMORY BOARD I in one ribbon cable. Another ribbon cable would

carry the sixty-four data lines from MEM4ORY BOARD 2, and could

* include the power signals and the TSTMD signal. The interface from

the OUT INTERFACE board to the OUT board was a card-edge connector;

however, due to problems with this connection, the interface was

* made permanent. This is not satisfactory, since the OUT card must

be changed to go from testing packaged integrated circuits to

testing integrated circuits on a silicon wafer, and the OUT board

may be changed when changing the device being tested, since some

device dependent circuitry may be included on the DUT board. A

different connection is required for this interface, which allows

flexibility, but also provides acceptable connection during high

speed tests. A daughter-board arrangement would appear to be the

optimal connection.

OEVICE-UNDER-TEST BOARD

The DEVICE-UNDER-TEST (DUT) board presently used with the functional

tester is shown in Appendix B. As can be seen, this board is simply

a patch-board to allow routing any of the sixty-four data lines,

four programmable clocks, P5V, or GND to any pin of the

device-under-test. The device-under-test connecticn includes a

20-pin zero-insertion socket and a 40-pin zero insertion socket.

The board was designed for 20-pin and 64-pin zero-insertion sockets,

, ~ ~ ~~. • . , ".° -- . . ". -- , .. , - . . .' .
.'.. . -" . Iwidlmm ,, ,,; .. o - ' , . . • -"/_ .o,

"
_. _ .. ,• '" -, -" . - .

37

37

* high-level language program on the Hewlett-Packard 9920A computer,

leaving only the resultant data read in from the device-under-test.

The time at which the data is written into the input latches from

* the device-under-test is determined by "STBIN", which is a

user-programmable control signal generated on the PROGRA1MABLE

CLOCKS board. This allows a user to determine the exact time that

* data is read in from the device-under-test in order to test such

things as propagation delay or read access time of the device being

tested.

Since the OUT INTERFACE board is not housed in the module, the power

(P5V and GND) and the TSTMD control signal are input through a

ribbon cable from MEMORY BOARD 1. Besides powering the DUT

INTERFACE board, these power signals are sent to the DUT board. A

needed extra for the functional tester is two programmable voltage

sources to connect to the device-under-test, and possibly to the

pipeline register latches. This would allow testing the A.C.

characteristics of a device at different voltage levels, and would

allow testing devices which require a different voltage level than

P5V and GND.

Besides programmable voltage supplies, the physical configuration of

this board needs to be modified. Due . availability, the ribbon

cables used from the two memory boards were 14- and 16-pin ribbon

cables. These should be changed to 72-pin ribbon cables. This

PREVIO US PAGE

0 t IS BLANK
0. . -, --- -- L -- ,, . I , i - . ': ,, ' .: '' '- . ., ,, , ,, . . ' ' ' ' . . , . . . , .

. ... ,e° , , i i i - ' ' ' > "i T L - . , : . ' i

35

If C

r z

0

U- U

0*
0

1Ln
0w

00

00

Fiur 6: DU nefc

01

• °I-

C" 0

*) 0 f

0 --

S = o

Figure 6: DUT Interface

34

between the OUT INTERFACE board and the rest of the system consists

of ribbon cables to the two memory boards and shielded coax cables

to the PROGRAMMABLE CLOCKS board. The interface to the DUT board is

a card-edge connector.

The schematics for the DUT INTERFACE board are presented in

* Appendix B. The block diagram is also presented in Figure 6: OUT

Interface, on the following page to aid in discussion. As indicated

by the block diagram, the four user programmable clocks from the

* PROGRAMMABLE CLOCKS board are not used on this board, but are passed

through to the OUT board. Sixty-four test data lines and eight

direction lines are received from MEMORY BOARD I by high speed, CMOS

latches. The data is clocked into these latches by the "STBOUT"

signal generated on the TEST-PHASE CONTROL board. As indicated by

the timing diagram previously discussed, this signal is generated as

soon as the data from MEMORY BOARD i is valid each cycle. The

output of the latch for the directional bits is always enabled.

These directional bits are used in conjunction with the

programmable-control signal "PDOUTEN" to enable the output of the

data latches to the device-under-test. If the direction bit is high

for a particular group of eight data lines, then those data lines

0 are inputs from the device-under-test to the functional tester for

that cycle. If the direction bit is low for a group of eight data

lines, then those data lines are outputs from the functional tester

to the device-under-test for that cycle; however, the data is not

49

clocks. After the user accepts the waveforms, the graphical data is

used to calculate the values to send to the functional tester so

that the desired waveforms are obtained, and these values are

written to the da.ta file. The CLOCKS module then determines if a
0

plot of the clock waveforms is desired, and if so, calls the

DRAWALL module after initializing the plotter.

The purpose of the TRANSFER module is to transfer the test vectors

and control data from the HP9920A computer test data file to the

functional tester, and to input the resultant data from the

functional tester to the HP9920A computer resultant data file. The

TRANSFER module first initializes the GPIO channel and opens the

test vector data file. The TRANSFER module then inputs the number

of data groups used and the number of data words per group from the

data file. These two numbers are used to indicate when to input a

test vector from the data file to transfer, and when to transfer a

"'dummy" value. The TRANSFER module always transfers four blocks of

2048 (2K) 16-bit test vector data words, and then 2048 (2K) 16-bit

direction words. If the group count indicated that a test vector

data group was being transferred that was not used, or if the word

count indicated that all of the test vector data words for the

particular group had been transferred, dummy values of OFFFFH are

transferred. After transferring the 10K 16-bit words for test

vectors and direction control, the TRANSFER module transfers the

clock programming values. When transfers of all test data is

*

4 ,I ,,,b .. '= h s.. i m i l i l ' ' W i i " """""i ""' " " l " " "-* " " " " '" ' " '

50

completed, the TRANSFER module creates a new file for the resultant

data and inputs 2K 16-bit resultant data words. The resultant data

mask, which has been input earlier in the program, is obtained from

the test data file, and used to filter out unused groups. The words

per group value, which has been previously input, is used to filter

out the unused words at the end of each group. The direction words

are used from the test data file to indicate if a value is non-valid

due to being in output mode for that cycle. If that is the case, an

"XX" is written in the resultant file for that value. After

inputting all of the resultant data words, the TRANSFER module

closes the resultant file.

.1
r- :. •

51

CHAPTER IV

Operation

The operational concepts of the functional tester, along with the

particulars of the hardware and software operation, have been

discussed in the previous chapters. This chapter will reiterate the

previous discussions concerning the operation of the functional

tester in order to bring together the total requirements necessary

to complete a test of a device using the functional tester.

The functional tester requires modifications which have been

discussed in previous chapters and will be discussed in greater

detail in the following chapters to reach the desired level of

testing capabilities; however, as the functional tester now exists,

the following capabilities are available:

- 100KHz-5MHz Test Frequency

- 64 Input/Output Data Lines

- Direction Control of Data Lines

in Groups of Eight

- Four User-Programmable ClocksSI
- User-Programmable Data Output Enable

and Data Input Strobe Pulses

- "User-Friendly" Input of Test Vectors

L i : 4] I, i) . . .)/ .

F

!4

52

* -Sorted Results in Hardcopy (Printer) or

Softcopy (Floppy or Hard Disk)

The following steps are required to operate the functional tester:

* 1) Make Electrical Connections

2) Functional Tester Power-Up Initialization

3) Enter Test Vectors

*4) Execute the Test

5) Analyze the Results

The electrical connections could be performed after the power-up

initialization in order to allow different types of tests of the

same device, or in testing different devices, without going through

the power-up initialization every time; however, care must be taken

to avoid shorting lines which could cause component failures in the

functional tester. All of the sixty-four data lines and the four

programmable clocks are tri-stated when the tester is not in test

mode, but the P5V power supply is not. When the programmable

voltage supplies are developed for the functional tester, they

should be tri-stated when the tester is not in test mode,

eliminating this problem.

Sixty-four data lines, which can be programmed in groups of eight as

e input or output lines during each cycle of the test, and four

user-programmable clocks are provided by the functional tester,

along with P5V and GND, as shown in the DUT INTERFACE schematic in

Appendix B, Functional Tester Schematics. Figure 7: 2114 RAM Test,

.-, - .im t m - I l
"

m -.... " ". ." .' " ' " " -
-

"._- " . " - % " .

• " " .- " " - - I -

r7-I

53

on the following page, shows the connection of a 2114 1024x4bit

Static RAM to the functional tester. This device will be used in

this chapter to illustrate the operation of the functional tester.

The four data lines of the 2114 are connected to a distinct

eight-data-line group of the functional tester, since these lines

will be programmed as input to and output from the function tester

at different times while the other 2114 lines will always be outputs

from the functional tester. The four data lines of the 2114 are

connected to DO-D3 of the functional tester. The ten address lines

of the 2114 are connected to D17-D26 of the functional tester. The

write enable of the 2114 is connected to D31 (which is the

most-significant bit of the upper group of the address data lines).

A programmable clock could have been used for the write enable to

measure the write cycle time of the 2114; however, this was not done

for this test since only the functionality of the device was being

tested. The chip enable of the 2114 is connected to ground. The

P5V and GNO were connected to the power supply inputs of the 2114.

This shows a typical case of the electrical connections necessary to

test a device using the functional tester.

Power-up initialization of the functional tester involves two steps.

First, power must be applied to the functional tester, and the test

vector downloader utility program on the Intel SDK-86 must begin

execution. This program is executed by pressing the "GO" key on the

SDK-86, and entering the starting address of the utility program,

/ :.'" ". -;').-- -L -." .'."i (- I.- ")' .: -..,- '.. '.-.. " :. " .' -- -.:.- ; .- -' .- . -.-L..am-..:

54

-q U -

Ca

z I

('Q U

Ln

xz -

z- M4

n~cn
U1U

a. U

wrtJ CO

ID (nr-

Fiur 7: 214 RA Ts

55

which is OFEOOOH. The utility program downloads the actual function

tester control program from the Hewlett Packard HP9920A computer,

and begins execution of that program. The second step required in

power-up initialization of the functional tester involves

transferring the functional tester control program to the SDK-86.

To accomplish this, the HP9920A computer must be "booted-up" under

* the PASCAL operating system. This is accomplished by energizing the

HP9920A, and selecting PASCAL as the desired operating system from

the menu which appears. A program named "TRANSFER" must be executed

on the HP9920A computer which transfers the functional tester 8086

machine language program located in a file on the HP9920A called

"FT CONTROL". When this is accomplished, the functional tester is

bready to operate.

Entering the test vectors and executing the test are performed by a

PASCAL program called "MSU FT", which executes on the HP9920A. The

program first asks the user whether the test vector data file

already exists, and if it does, whether the same programmable clocks

are to be re-used. This feature simplifies running the same test

several times while varying the programmnable clocks and test

frequency in order to determine the a.c. characteristics of a

b device. If the test vector data file does not exist, the program

requests the name to be used for the test vectors and results data

files to be created. The program appends a ".DAT" to the name

entered and creates a file with this name for the test vectors. An
I1

56

".RES" is appended to the name entered, and a file with this name is

created for the resultant data. The program next requests the

number of data groups (where a group is eight data lines), with the

maximum being eight data groups. For the 2114 test, three data

groups were used; therefore a three was entered. The program next

requests the number of data words which will input for each data

group, with a maximum of 2048 data words per data group. All 1024

locations of the 2114 were to be written into, and then all 1024 of

the locations were to be read back, which required 2048 addresses to

be generated; therefore 2048 was entered for the number of data

words per group. The same number of data words must be entered for

every data group, which is the reason that 2048 data words were

entered for the data lines connected to the input/output lines of

the 2114 even though only 1024 of these were used. Also, inputting

the test vectors is done sixteen bits at a time, which is the reason

the second eight-data-line group was not used in testing the 2114,

which allowed entering the 2114 data vectors separately from the

2114 address test vectors. After inputting the number of data words

per data group, the program requests a result mask which is used in

sorting the results. Since data groups may be inputs or outputs,

determining if a data group was ever used as an input requires

testing the direction bit for that data group for the entire length

of the test. This is very time-consuming, and to save time a mask

is entered with a "1" in a positon for a data group if that data

group was ever used as an input. This allows the program to check

L " .- o.-..,..-.....-... .. -....-...... .-........-.-.-.....-.-.-.-

57

only the direction bits for groups which were used as input. The

test of the 2114 required a result mask of "00000001" since only the

first data group was ever used as input. After entering this result

mask, the program requests the test vectors and then the direction

bytes. The direction bytes are entered in the same format as the

test vectors, with the exception that the direction bytes are only

eight bits long, and constitute only one group. The test vectors

may be input in binary, hexadecimal, or decimal format. Binary data

must have an appended "B" (ex: 01011011B); hexadecimal decimal data

must have an appended "H" (ex:OFOAEH); and decimal data may have an

appended "D", or no appended letter (ex: 9086D or 9086). Sequential

data may be entered by giving only the first and last values. For

example, if a test required an address output which varied from 0 to

2047, the data could be entered as "[OOH..7FFH]" which would enter

2,048 values. Repeated data may be entered with a multiplier; for

example, to enter a count from 0 to 15 and then from 40 to 49, fifty

times, the following could be entered: "(50([OOH..OFH],[40..49])"

which would enter 1,300 values. Repetitions within repetitions are

also allowed, such that entering fifty vectors which includes ten

OFH values followed by a count from 0 to 9 could be entered:

"(50(10(OFH),[0..9])". The "MSU FT" program keeps track of the

number of values provided for each data group, issues a warning if

too many values are input for any one data group, and re-enters the

values for that group. After entering the test vectors and

direction bytes, the program requests the test frequency be entered,

:L) : L-" . L -.
)

,.. : IT- -.., -.- - .. . - .. . '''.. .' -LL)LL - .(-L .)L -- (-. - --" - :TL--). .) I..L .:- (

58

which may be a value between 100KHz and IOMHz. Entering values

above 5MHz are allowed, but will result in erroneous resultant data

until modificatons are made to the functional tester. For the 2114

test, a value of 1MHz was used. Next, the data output enable pulse,

data input strobe pulse, and four programmable clocks are programmed

by using the arrow keys to modify a graphical repesentation of the

clock on the screen until the desired waveform is achieved, and then

presing the "RETURN" key. After entering the programmable clocks,

the program transfers the test vector data file, starts the test,

reads the results back to a result file, and asks whether the user

wishes to view the results on the screen or have the results printed

on the printer. The analysis of the results must be performed by

the user.

The following represents the information entered in order to create

the test vector data file used to test the 2114. This data was

entered after executing the "MSU FT'" PASCAL program on the HP9920A

computer.

DOES THE TEST VECTOR DATA FILE ALREADY EXIST?

>>N

ENTER THE NIAME TO BE USED FOR THE FILES:

>>RAM2114

HOW MANY DATA GROUPS WILL BE USED?

>>4

59

HOW MANY DATA WORDS PER DATA GROUP WILL BE USED?

>>2048

ENTER AN 8-BIT BINARY NUMBER WITH A "I" FOR EACH DATA GROUP WHICH

CONTAINS TEST RESULTS:

>>00000001

ENTER THE VALUES OF THE TEST VECTOR DATA:

DATA GROUP NUMBERS I & 2 WORDS LEFT = 2048:

>>(512(OAH,05H))

DATA GROUP NUMBERS 1 & 2 WORDS LEFT = 1024:

>>(1024(OOH))

DATA GROUP NUMBERS 3 & 4 WORDS LEFT = 2048:

>>[OOH.. 3FFH]

DATA GROUP NUMBERS 3 & 4 WORDS LEFT = 1024:

>>[8000H.. 83FFH]

PLEASE ENTER THE "DIRECTION" WORDS, WITH THE LEAST SIGNIFICANT BIT

AS THE DIRECTION FOR DATA GROUP NUMBER 1:

DIRECTION WORDS LEFT = 2048:

>>(1024(OOH))

DIRECTION WORDS LEFT = 1024:

>>(1024(01H))

PLEASE ENTER THE DESIRED TEST FREQUENCY IN HZ:

1 1000000

The program then requests the values necessary to achieve the

desired waveforms for the programmable clocks as indicated

previously. After inputting the programmable clocks' values, the

z,- '-.- i. ;, . '. " " ?, "', '- < ' " , -' "i.;_,.? ---. ; " - >- ;..," > . -:.. > .-. --.. ," -... ,.. ...-.. -.

60

program transfers the test vector data file to the functional

tester. At the completion of the test, the functional tester

transfers the results back to the HP9920A computer which loads them

in a file named "RAM2114.RES". This test was run on a 2114 with

complete success; however, due to the length of the results (which

consisted of 1024 [AH,5H] as the input, and the same as the result),

the results of this test are not presented. Another test was run

which consisted of twenty values, which were

(OAH,05H,[OOH..OFH],OAH,05H). The results of this test, along with

the electrical connections and test results of tests run on a 7404

HEX INVERTER and a 7482 2-BIT BINARY FULL ADDER, are presented in

Appendix E, TEST RESULTS.

.~. %- ~ -

.- ~ A .

61

CHAPTER V

EVALUATION AND DISCUSSION

This thesis presented the design and implementation of a high speed,

integrated circuit functional tester, primarily for use in a

university setting. As indicated in Chapter I, major design work in

very large scale integration (VLSI) is being performed in

universities. One of the major limitations in this endeavor is the

ability to adequately test the fabricated IC's. The functional

tester presented here has the following capabilities:

- 1OOKHz - 514Hz Test Frequency

- 64 Input/Output Data Lines

- Direction Control of the Data Lines

in Groups of Eight

- Four User-Programmable Clocks

- User-Programmable Data Output Enable

and Data Input Strobe Pulses

- "User-Friendly" Input of Test Vectors

- Sorted Results in Hardcopy (Printer) or

Softcopy (Floppy or Hard disk)

The hardware design and implementation included the interface

between the functional tester and the Hewlett Packard computer; the

memory boards to buffer the test vectors and resultant data; the

test-phase control timing board; the programmable clocks board; and

- - . -.. - - -- -. ~>. - - :- -

62

the pipeline registers board interfacing the functional tester to

the device under test. The software design and implementation

included the 8086 assembly language programs to control the

functional tester and the PASCAL programs on the Hewlett Packard

HP9920A computer to transfer data to/from the functional tester and

allow "user-friendly" input of the test vectors. The operational

requirements of the functional tester were presented, along with

test results from the test of a 2114 1024x4BIT RAM, a 7404 HEX

INVERTER, and a 7482 2-BIT FULL ADDER. These results indicate that

the functional tester operates according to the specifications

indicated above, which are adequate to functionally test most of the

VLSI designs being done in universities at present, since these very

large scale integrated circuits can usually be seperated into

smaller functional circuits similar to the circuits tested. The

only drawback to the functional tester is the requirement that the

user microcode all of the test vectors required to adequately test

the device. This is not a major drawback for this application

however, since most of the designs are new, and no assembler exists

for these circuits. Testing parts of the circuits could be handled

by generating standard tests for the various functions implemented

by the VLSI circuit. For instance, the test of the RAM device

indicates the ease in developing test patterns for memory devices,

and this test, or a similar test of a memory device such as the

"walking-ones" test, could be developed for the memory storage

functions of other devices to be tested.

..

76

s I.

J fe eeeU

r I I r

u
6

Sfr

] f l l

l*lili

75

*~ I~ I

I-~ i. I-

74

* *

. ~ ~ ~ ~ ~ -.e

I .-.- ~

73

U I u I * F
_________________________ -

- U

* U

U- Um~*zU::flu2~2GU.UUflfl
U

*0.U.@.U~ U
* 2

Ii
2
U

- S
- U

I
* U

S. S.

0
I-

* U

U U a 2

* -,. * ..- ,.. - *%.

..............

72

memEft

Of--

o.

a 1 J ~

10 0

IS a

X au a

70

19 C

0. 2

CLUJXI

CtC

* U *

69

APPENDIX B

FUNCTIONAL TESTER SCHEMATICS

68

0 W

a CX

Ln~

67

APPENDIX A

TEST STATION

90

66

Appendix B) with separate patch wires. The patch-plug connections

have been tested at 5MHz with no loss of signals, and should provide

adequate connections at IOMHz test frequencies.

The primary modification to the packaging of the functional tester

involves replacing the wire-wrapped boards with printed-circuit

boards. This would greatly enhance the operation and reliability of

the functional tester, but should be implemented over a period of

time as the other modifications are included.

Several of the modifications mentioned throughout this thesis are

not reiterated in this chapter, but would serve to enhance the

overall operation of the functional tester. The modifications

presented in this chapter are considered to be the most important,

and should be considered first.

St

65

a performed using a high-level language, with the results easily

accessible in a sorted file.

* The programmable voltage sources and the single-board microprocessor

controller could be implemented with additional development effort.

The programmable voltage sources are required to test CMOS devices

at their operating voltage, and to test devices at voltages other

than their operating voltage in order to determine how the voltage

differential affects timing characteristics. The design of the

programmable voltage board would include latches to contain the

binary representations of the desired output voltages;

digital-to-analog converters to produce the desired voltages; and

analog voltage regulators to regulate the voltage while supplying

the necessary current. The single-board microprocessor controller

would replace the Intel SDK-86 single-board computer, for cost and

space improvements. The cost savings would affect future

functional testers to be built, but the space improvements would

greatly enhance the packaging of the existing functional tester.

The mechanical modifications to allow easier electrical connections

when connecting a device to be tested to the functional tester would

require only minor modifications to the patch-plug-type board which

now exists. Rather than the patch wires being permanently connected

on one end as is now the case, the board should include patch

receptacles on both sides (refer to the DUT BOARD schematic in

• .:,,.',,, ,..' .".,'.," .,.-...-. -........-.- ,---..........

64

* problem, which is the timing delays of the TTL devices used to

implement the test-phase control signals and the programmable

clocks. Using ECL devices to implement these circuits was studied,

* but would require additional expenses for the devices and more

precision in developing the prototype functional tester than time

allowed. A VLSI design which will provide a programmable pulse with

* a resolution of 10nanoseconds or better, based on a reset strobe

each cycle, has been considered and appears feasible. A device of

this nature would allow generation of the test-phase control signals

and the programmable clocks at the resolution necessary to allow

tests up to 1OMHz, or more, with adequate precision to measure the

timing characteristics of the device under test.

The most obvious solution to computer analysis of test results

involves the "known-good" method. For tests involving the same test

for several identical devices, the test would be executed on a

device which was known to be good (by hand analysis of the test

results), and then the results of this test would be compared by the

computer for the remaining devices. Another area of computer

analysis would be statistical analysis and records of the failure

modes resulting from the tests. These analysis aids were not

developed, based in part on time constraints and on the desire to

produce the most general-purpose functional tester possible. The

addition of these analysis aids is considered a simple matter for

specific circuits, since all of the test results analysis is

'-.' - '_ ,_. _° '_. Z, - . - - ' . " .. " . " - " - " -" - -.. - . - , ' ' ' ' . ' ' ' " . . ' - , - . - " • . . " - , , . , - . . - . -

" -.,d i,,,t. U~o ma.. ,.,,.-.. . .--. .,.. . . ,. ,,-,.,.-.-.-.-.',-,.,

63

Enhancements

* The abilities of the functional tester presented above are adequate

to functionally test, at or above their operating speed, most of the

circuits being developed in universities at present. The ability to

* functionally test the higher speed VLSI circuits, and the ability to

test the timing characteristics of present VLSI circuits, requires

the tester to perform beyond its present level of capability in some

areas. These modifications can be functionally classified as:

- Test Frequencies of at least IOMHz

- Programmable Clocks With 10nanosecond Resolution

- Automated Generation of Test Vectors

- Computer Analysis of Results

In addition to these requirements, other modifications which are

needed to make the functional tester perform at the operational

level desired and provide easier operation include:

- Two or More Programmable Voltage Sources

- Mechanical Modifications to Allow Easier

Electrical Connections

- Single Microprocessor Control Board

- Mechanical Modifications to Better

Package Tester

The limit on test frequency at 5MHz and the limit of the

programmable clocks resolution at 50nanoseconas relates to the same

. . , , -

77

cu Cu

ui ul
*i w

* CCO

..

go 4,

.

78

cn m

a cm

uU

Z LIE I "I CUi- f

CUU

o UZ

cz M U

V 6V

79

uiui - Oa

.....4 1

U Ul

80

-S -

aa

-4uiw ui-

-- ---aF I
uo

a. .0 % or'Uue

U U m .

81

a U £ V

* a
* u~

I, I,

d a
£ a

- aI- Li a

z I- a). I.U *

* 0 0 S..
I- I- i-U

LI am a
a
C

0

* j U

Uo

a ~ - a a'

.4- V

U

U

9 'I

I! l~
a-

-t

* U

9 a U U £

4

.

82

i lilt

* 4*

]HI0 L

- . Sf

a
eta

vl I IJ -r-T
U. - US S

6 4-H

- - .

83

b a U * 1

iiii

a -4 .-4

84

-- Na

jjU -

85

LLI

a w 1 £

• " " -.- . -. ! l . l
I

nl p - - - , -. - ..- : ,. ;

86

4~ u

a - I

c w-

• - .! Cl

c w

L' 0 z

U" £

U" C C -

- b. - U?

U a 0

£

a :;

CO5.

_ 5,. :-- 'a. ,a --' ,,g .. ' ; /ii' z,' ;-. m :"': .-:'-::."-: i..-._-...:..:...-..-..: ; :.., -. ,..:-... .,.S.. -.

87

0 U £

0

* 0
* -

* U U

- - I
* 0 U

U U

III U * -
* S
£ *
K S
K U
£
S
U I

C

* U

1..-. -- J4EEE6E .. U

- ~ - U
* 1

I

U-

- P05000

* S

.0 U U £

88

a

am

afta

as. as

89

* I U 2

444PI1131-

.

lft

&UW!£

90

aia

ot-

* a.

1 . -4LI 0

La (L £

a - a,
C~ubA Oa.

WIN (cj W

AD-A15S 373 BULK CHOS VLSI TECHNOLOGY STUDIES PART 5 THE DESIGN AND 2/2
IMPLEMENTATION OF..(U) MISSISSIPPI STATE UNIV
MISSISSIPPI STATE DEPT OF ELECTRICAL E.

UNCLASSIFIED J D TROTTER ET AL. 17 JUN 85 F/G 14/2 N

EmmoEEEEns

,1.0

t%I IM _ ~ 1112.

- _ Im.
113.

i . iii'*
9= 1 45

1925 1,4 1-6__

NATIONAL BUREAU OF STANDARDS
MICROCOPY RESOLUTION TEST CHART

11

"1h

0 057

...

..
..

. .
*. ..".-.".-". .."".-

° ""*. " - ...''- " ..'.' ." " "'--' .-' " -' . . " " "" .. "."-.--. .'-."
. . .."-.-.-..-.-.. . .. -. -'.'. .- .' .-. a --'-.'--. .'. ''.'.. .-.- ," "'".. . .".-. .--..-.. ."...,-.,.--.. . . ,-." "-"- '--

[- .. -i.i.-. - --'''-.-:..-.'°. . -. '- .. '-''. ' -. ' , -,..--'-'- "..'': -" - '.. ''_' -. ' ' .--.-- .',' -' , -: , " : , .

n • . I.
* i

* ai

Vfl
• " [1

i i . * *.

92

Oil.

I r

93

If!

a~~ ~ ag 0s

a u

94

* I U I *

m

13S

a-.j I

. . . - . . .4

95

a U * I £ 4

L -

- I !

a

* H
* ~ 2~

~. S

i-1

S 6 * S

* a
a

I

* 9

a

a; ma ~ ~

- a

ma *4 -

-- - a
* . . a - -

ma w

p. -

a a

a U a £

9-

S.

96

*A a o".0 00

aa

I

97

*llll U - U S - ILI~ l CII

: .l w ... me ,.

F. ..
m

u.* aU

C C

-; " . -" '-. _.. -, ,".;-" . -- ..' .-.',.-' 4", ". -' -. . '...-..- '. . -.. "'- ' -" "-. . '-"- -. -,-. •-C '- "-. , '_ V,.,-.

98

OI

aa

Iz, .0

99

ria

.- e ri F' F' i r, F'i Fli F' 6i M

L4L -4

cm (.4 - -4 -0 .- 4 4 .4 -4 -4 _; d

uiiu~~iiz~ di cd .. l

I.IL

1,4 4 I4 .

4 w -i

LiA

100

U I 0-4 1

*d 0-4

alc U=--

momcao-..-o 0-
cmD C: ---- 0 0.

01"IA C=-.O o--l
DImy C=-0-.

o.*w C>--o 0-
oD v CD- Q- --

Om ~'m C-o

Ckn- C= -0--
DI'2wc~.-0 0-

C3 D4Y)Q----O 0--I v

Ori CD --- o 0-!-

Q--v C=-O

A.-I'- --

Q0-
cm A-> Q------O -

101

APPENDIX C

ASSEMBLY LANGUAGE PROGRAMS

102

UTILITY PROGRAM FLOWCHART

START

LOAD DATA SEGMENT

& INDEX REGISTERS
TO POINT TO 0100H

INPUT WORD

TRANSFER CNT

116

PASCAL PROGRAM FLOWCHART

XIST ?

NPUT NEW FILENAE JINPUT OLD FILENAM

INPUT NUMBER OF U
DATAGROUPS USEDfN
INPUT NUMBER OF COK
WORDS/GROUP

CREATE NEW FILE1 .3

APPENDIX D

PASCAL PROGRAM

114

XCHG DX,BX

LPS: IN AX, (DX]
AND AX,2020H
JZ LPS

LOOP LPT

CLEAR OUTPUT PORT

XCHG DX,BX
OUT [DX],AX

JUMP TO START OF PROGRAM FOR NEXT TEST

JMP START

• . L -' -, ,, -- ,, .- -, 5 -' - "- - - ' -" -. , . . . - , - , - ' - ' - . . . i - - - - - - . - . " ' . " , - ' - - ' . , - - -

113

START TEST

MOV AL,06H
OUT [DX],AL

CHECK FOR END OF TEST

LP: IN AL,[DX]
AND AL,O1H
JNZ LP

SET DATA SEGMENT AND INDEX REGISTERS TO
POINT TO DATA BUFFER ON MEMORY BOARD 2

MOV AX,OEOOOH

MOV DS,AX
MOV DI,QOH

SET TESTER TO TRANSFER .IODE

MOV AL,O1H

OUT (DX],AL

;INITIALIZE PIA'S

MOV DX,OFFFEH
HOV AL,ODH
OUT [DX] ,AL

LOAD CX WITH WORD TRANSFER COUNT

MOV CX,2000H

LOAD DX AND BX WITH OUTPUT PORT ADDRESSES

MOV DX,OFFFCH

MOV BX,OFFFAH

OUTPUT DATA WORDS UNTIL COUNT -0

LPT: XCHG DX,BX
MOV AX,DS:[DI]

INC DI
INC DI
OUT [DXI ,AX

CHECK STATUS FOR WORD READ OUT

INPUT DATA WORD AN STORE IN BUFFER MEMORY12j

XCHG DX,BX
IN AX,[DX]

MOV DS.[DIhAX

INC DI
INC DI

LOOP LPM

LOAD COUNT REGISTER (CX) WITH 7

MOV CX,07H

RE-INITIALIZE DX AND BX TO INPUT PORT ADDRESSES

MOV DX,OFFF8H

MOV BX,OFFFCH

SET INDEX REGISTER TO FIRST ADDRESS OF
PROGRAMMABLE CLOCKS' REGISTERS

MOV SI,OAOOOH

INPUT 7 CLOCK WORDS

LPB: XCHG DX,BX

CHECK STATUS FOR NEW WORD INPUT

LPSTAT2: IN AX,[DX]
AND AX,2020H

JZ LPSTAT2

INPUT AND STORE DATA WORD

XCHG DX,BX
IN AX,[DX]

XCHG DX,SI
OUT [DX],AX
INC DX
INC DX
XCHG DX,SI
LOOP LPB

SET TESTER MODE TO TEST

MOV AL,02H

NOV DX,OOH
OUT [DX],AL

111

TESTER CONTROL ASSEMBLY LANGUAGE PROGRAM

INITIALIZE PIA'S

START: MOV DX,OFFFEH

MOV AX,0BCB4H

OUT [DX],AX
MOV AL,OCH
OUT [DX],AL

SET TESTER MODE TO TRANSFER

MOV AL,01H

MOV DX,OOH

OUT (DX],AL

SET DATA SEGMENT AND INDEX REGISTERS

TO BUFFER ADDRESS ON MEMORY BOARD 1

MOV AX,OFOOOH

MOV DS,AX
MOV DI,OOH

LOAD WORD TRANSFER COUNT IN CX

MOV CX,2800H

LOAD DX AND BX TO POINT TO INPUT PORT
DATA AND CONTROL ADDRESSES

MOV DX,OFFF8H
MOV BX,OFFFCH

CLEAR INPUT PORT

IN AX,(DX]

INPUT WORDS UNTIL COUNT = 0

LPM: XCHG DX,BX

CHECK STATUS FOR NEW WORD INPUT

LPSTAT: IN AX,[DX]

AND AX,2020H
JZ LPSTAT

1.10

4

SET TESTER MODE

TO TRANSFER

WITH K

INCREMENT DATA
INDEX REGISTER

WODRA

OU

py

DER1ENpN

...

***~ ~ -- J-: .*'~-.;-: --- * *--.*.-* -- *--- *.'5

109

3

SET TESTER MODE
TO TEST

TES

* . . V - -- - - - - - - -ETED

.. . 4 ~ t C p

108

INPUMET DAT

INCXREGSTERAT

........... NDE R...

107

INPUI

INDEX REGISTEROO

* DEREMEN CCK

START ADRS

2

CN -.

T

... G -. AO

106

CONTROL PROGRAM FLOWCHART

START

INIT I'

SSET TESTER MODE

TO TRANSFER

LOAD DATA SEGMENT
& INDEX REGISTERS
TO POINT TO OF000

(MEMORY BOARD 1)

AD CNT REGISTER
WITH 10K

1.-

..i ._i, " "-".. " . ..v"."""-"-. .,"- .,"."."-.... ,, -.... -... . . .,...,.1-. .

105

AND AL,20H

JZ LPSTAT2

INPUT DATA WORD AND STORE IN PROGRAM BUFFER

XCHG DX,BX

IN AX, [DX]
MOV DS:[DI],AX

INC DI

INC DI

LOOP LPM

WHEN PROGRAM IS TRANSFERRED, JUMP TO START

JMP 00:100H

E

*

'-C Y- -- . - - - --.--

104

UTILITY ASSEMBLY LANGUAGE PROGRAM

LOAD DATA SEGMENT AND INDEX REGISTERS
WITH START ADDRESS OF PROGRAM BUFFER

MOV AX,10H

MOV DS,AX
MOV DI,00

INITIALIZE PIA'S

MOV DX,OFFFEH

MOV AX,OBCB4H
OUT [DX],AX
MOV AL,OCH

OUTB [DX],AL

LOAD DX WITH INPUT PORT DATA ADDRESS, AND

LOAD BX WITH INPORT PORT CONTROL ADDRESS

MOV DX,OFFF8H

MOV BX,OFFFCH

CLEAR INPUT PORT

IN AX,[DX]

CHECK STATUS FOR NEW WORD INPUT

XCHG DXBX

LPSTAT1: IN AX,[DX]
AND AX,2020H
JZ LPSTAT1

INPUT WORD TRANSFER COUNT

XCHG DX,BX

IN AX,(DX]
XCHG AX,CX

INPUT WORDS UNTIL TRANSFER COUNT = 0

LPM: XCHG DX,BX

CHECK STATUS FOR NEW WORD INPUT

LPSTAT2: INB AL,[DX]

. -. -. - -- .i --

103

IN PUMET WORD

INDEX REGISTER

DECREMENT CNT

, ;.- ...:~~~ ~ ~~.. -. -. .
. .. .-.-.-. .., -..- ...-.-.. ,-,-.- . ..--.. -.-.-.-.-. .-

117

WRITE NUMBER OF
GROUPS & WORDS

TO FILE

INPUT RESULT

MASK

WRITE RESULT

M1ASK TO FILE

IF

DIR_WRD_INTRE

CREATE

2

.. .

0

118

2 3

CLOCKS

TRNSE

LITN

119

CREATE

IZ-ES

GTSAT&I NTG 2

ENDNRT VALUE

EN

3 4

.L

3 4

120

3 4

T T~~

UPDTESTRUPAEWD

VALUEOFL N

N START

* EEND

yy

-t

121

UNASSEMBLE

IGTLTIPIR]

PUT VALUE PUT VALUE
INTO ARRAY INTO ARRAY

I[DLEE FIRST
VLE& COMMAJ

INRMN1N

r- 7 - C.-.. . .7.7

122

03

GET START & INTGD

VE VALUET

IN STARTVAL

NC START

=END ?

y

2

- - -. -.

123

2

DECR CNT

CNT POINTERS

SDECREMENT "
MULTIPLIER.

MULT -"

. END .

124

ING

TO DECIMALDLEE Bo

I EN

DEEE""TASBNR

125

DEC

PMUL T

L_B POSMUL PSMT

ADDUL DIGIT

L B Y

.

AD DII TO .. * ~ .

126

C D

INIT VARIABLES

I
INPUT TEST FREQ

CALC VALUE TO

SEND TO TESTER]

PCLOCK

INCR CNT

6 ?

t

CNTy

DRAW ALL

N ACCEPT

CLOCKS

127

SEDTO TESTER

WRITE VALUES
TO FILE

N21 PLOTTE

DRWALL

128

PCLOCK

DRAW CLKj

.1

ACCEPT '

..

END.

129

DRAWCLK

DRAW 20MHiZ BASE
OSCILLATOR

CALC POINTS 'IND
DRAWMASTjJ

cEND

..

130

TDRAW-ALL

DRAW_CLK

CALC POINTS AND
DRAW PRG CJ

144

WRITELN;
WRITELN('PLEASE RE-INPUT

DATA WORDS.');

WRITELN;
WRITELN;
OOPS:=TRUE;
STOP:=TRUE;

END;
END; (END N LOOP

END; (END M LOOP
END; END PROCEDURE UNASSEMBLE

THIS PROCEDURE RETURNS A BOOLEAN ARRAY GIVEN
A HEX, BINARY, OR DECIMAL STRING.

PROCEDURE BOOL(BOOLI : INTEGER; VAR PDIRV TST VAR);

VAR CNTVAR : INTEGER;

BEGIN C PROCEDURE BOOL

FOR CNT VAR:=1 TO 8 DO
BEGIN

IF ODD(BOOLI) THEN PDIRV[CNT VAR] :=TRUE
ELSE PDIRVECNT VAR] :=FALSE;

BOOLI :=TRUNC (BOOLI/2);
END;

END; (PROCEDURE BOOL

THIS PROCEDURE CREATES THE DATA FILE.

PROCEDURE CREATE(WRDS_PERBLOCK,
NUMBER OF BLOCKS INTEGER);

VAR

LNGTH,CNTVAR,
PO,PM,PN,K : INTEGER;
STR,

LEFT,RIGHT,
VALUE,TEMPA : S;

BEGIN (CREATE
WHICH GROUP:=1;
WORDSLEFT: =0;
STOP: FALSE;
COPS: =FALSE;

• °. %- •° °.........................

143

STRDELETE(ANUM(N] ,1,K+1);

K:=STRPOS ('1 ',ANUM(N I);
STRDELETE(ANUM(N] ,K,1);

PM:=INTGD(TM4PNA);
PN:=INTGD(ANUM(N]);
FOR PO:- PM TO PN DO

BEGIN
FA:=P0;
PUT(F);
WORDS LEFT :=WORDSLEFT+1;
IF WORDSLEFT=WRDSPERBLOCK

THEN IF (M ,=TIMES) AND
(N 7- COUNT-i) AND (P0 7= PN)

THEN BEGIN
WORDSLEFT:0O;
WHICHGROUP:=WHICHGROUP-'2;

END
ELSE BEGIN

N: =COUNT+l;
M:=TIMES+l;
WHICH GROUP: =DATAGROUPS+l;
WRITELN;
WRITELN;
WRITELN(YOU INPUT TOO MANY

WORDS FOR THIS GROUP!I');

WRITELN;
WRITELN('PLEASE RE-INPUT

DATA WORDS.');
WRITELN;
WRITELN;

OOPS:-TRUE;
STOP:=TRUE;

END;

END;
ANUM(NI :=TMPNB;

END;
IF WORDSLEFT-WRDSPERBLOCK

THEN IF (M 7- TIMES) AND (N ,=COUNT-1)

THEN BEGIN
WORDS LEFT: =0;
WHICHGROUP:=WHICH GROUP+2;

END
ELSE BEGIN

N: =COUNT-i;

M: TIMES+1;
WHICHGROUP: =DATAGROUPS+l;
WRITEN;
WRITELN;

WRITELN('YOU INPUT TOO MANY

WORDS FOR THIS GROUP!');

142

COUNT, :
M, N,
J, K,
PM,PN,

P0 INTEGER;

ANUM : ARRAY(1. .100] OF S;

BEGIN ((NASSEMBLE

TMS :=STOR;
STRDELETE(TMS,1,1);
J:-STRPOS(' (',TNS);

K:'.STRLEN(TMS) - J

STRDELETE(TMS,J,K+1);
TIMES:=INTGD(TMS);
TMPNA:=STOR;

STRDELETE(TMPNA,1,1);
STRDELETECTMPNA,1,STRPOS(' (',TMPNA));

TMPNB:=TMPNA;
STOP:=FALSE;

COUNT:=1;
REPEAT

K:-STRPOSC' , ',TMPNA);

IF K=0 THEN BEGIN
STOP:=TRUE;

K:=STRPOS(') ',TMPNA);
END;

STRDELETE (TMPNA,K,STRLEN (TMPNA) -K+1);

STRDELETE(TMPNB,1,K);
ANUM(COUNT] :-TMPNA;

COUNT: COUNT+l;
TMPNA:-TMPNB;

UNTIL STOP;
FOR M:=l TO TIMES DO

BEGIN
FOR N:1l TO COUNT-1 DO

BEGIN

IF LEFTMOST(ANUM(NI) ,'

THEN
BEGIN

FA:=INTGD(HEXIT(ANUM[NI));
PtJT(F);
WORDSLEFT: =WORDSLEFT+1;

END

ELSE
BEGIN

TMPNB:-ANUM(NI;
STRDELETE(ANUM(N] ,1,1);

K:-STRPOS C' *,ANUM(N]);
TMPNA:=ANUM(N];

STRDELETE(TMPNA,K,STRLEN(ANUM[NI)-K+1);

141

K:=INTGD(STOR);

STB:=INT TO HEXSTRNG(K);

END

ELSE BEGIN

K:=INTGD(STOR);

STB:=INT TO HEXSTRNG(K);

END;

HEXIT :STB;

END; (FUNCTION HEXIT

THIS FUNCTION RETURNS A BOOLEAN STRING

FROM AN INTEGER

FUNCTION INT TO BOOLS(FIN:INTEGER) S;

VAR FSTR : S;

FCT : INTEGER;

BEGIN

FSTR:-'';

WHILE FIN 7 0 DO

BEGIN

IF ODD(FIN) THEN FSTR:='l'+FSTR
ELSE FSTR:='0'+FSTR;

FIN:-TRUNC (FIN/2);

END;

FOR FCT:=l TO (8-STRLEN(FSTR)) DO

BEGIN

FSTR:='0'+FSTR;

END;

INT TO BOOLS:=FSTR;

END; (FUNCTION INT TO BOOLS)

THIS PROCEDURE UNASSEMBLES A STRING INPUT

TO THE DATAFILE CREATION PROCEDURE AND

CREATES THE FILE VALUES FOR REPEATING SETS

OF DATA.

PROCEDURE UNASSEMBLE (STOR,RT,LF:S;
LN,WRDSPER BLOCK:INTEGER);

VAR

STOP BOOLEAN;
TMS,
TMPNB,

TMPNA S;
TIMES,

I

140

REM[CNTVAR] :=K MOD 16;

K:-TRtC(K/16);
UNTIL K-0;

FOR J:=CNT VAR DOWNTO 1 DO

BEGIN
CASE REM(J] OF

Q:ThPSB:='O';
1:TMPSB:-'l';
2:TMPSB:='2';
3:TlMPSB:='31;
4:TMPSB:-'';
5:TMPSB:'15';
6:TMPSB:-'6';
7:TMPSB:'7';
8:TMPSB:'8';
9: TMPSB: -' 9';
1O:TMPSB:='A';

12:TMPSB:='C';

13:TMPSB:='D';
14:TMPSB:-'E';
15:TMPSB:='F';

END;
STRAPPEND (TMPSA,TMPSB);

END;

STRAPPEND(TMPSA, 'H');

INT TO HEXSTRNG:=TMPSA;

END; CINTTOHEXSTRNG)

THIS FUNCTION RETURNS A HEX STRING WITH AN

APPENDED "H" FROM A BINARY OR DECIMAL STRING.

FUNCTION HEXIT(STOR :S) S;

VAR
STE S;

L,K :INTEGER;

BEGIN CFUNCTION HEXIT

L:-STRLEN(STOR);
IF RIGHTMOST(STOR) @H'

THEN STB := STOR

ELSE IF RIGHTMOST(STOR)-'B'
THEN BEGIN

K:-INTGD(STOR);

STB:-INTTOHEXSTRNG(K);
END

ELSE IF RIGHTMOST(STOR)-'D'
THEN BEGIN

139

IF TMPN='4' THEN EX:=4;
IF TMPN='5' THEN EX:=5;

IF TMPN-'6' THEN EX:=6;

IF TMPN-'7' THEN EX:=7;

IF TMPN-'81 THEN EX:=8;

IF TMPN='9' THEN EX:=9;

D:=Z*EX+D;
STRDELETE(TMPA,STRLEN(TMPA) 4);

END;
DEC:=D;

END; CDEC

BEGIN CINTGD
NUMBER: =0;

L:=STRLEN(TMPSA);
IF RIGHTMOST(TMPSA) ='Bl

THEN BEGIN
STRDELETE(TMPSA,L,1);
NUMBER:=BINARY (TMPSA);

END
ELSE IF RIGHTMOST (TMPSA)'H'

THEN BEGIN
STRDELETE(TMPSA,L,1);
NUMBER: =HEX (TMPSA);

END
ELSE IF RIGHTMOST(TMPSA)='D'

THEN BEGIN
STRDELETETMPSA,L,1);
NUMBER:-DEC (TMPSA);

END
ELSE NUMBER:=DEC(TMPSA);

INTGD:=NUMBER;

END; (END INTGD

THIS FUNCTION RETURNS A HEX STRING FROM

A DECIMAL INTEGER.

FUNCTION INTTOHEXSTRNG C K INTEGER) S;

VAR TMPSA,
TMPSB S;
REM ARRAY(O. .10] OF INTEGER;

CNTVAR,J INTEGER;

BEGIN (FUNCTION INT-TO-HEX.

TMPSA:';
CNT VAR:0O;
REPEAT

CNTVAR:=CNT VAR+l;

138

THIS FUNCTION RETURNS THE RIGHTMOST CHARACTER

OF A STRING.

FUNCTION RIGHTMOST (STRX : S) : S;

BEGIN
STRDELETE(STRX,1,(STRLEN(STRX)-I));

RIGHTMOST := STRX;
END;

THIS FUNCTION RETURNS THE LEFTMOST
CHARACTER OF A STRING.

FUNCTION LEFTMOST (STRX S) S;

BEGIN
STRDELETE(STRX,2,(STRLEN(STRX)-I));
LEFTMOST := STRX;

END;

THIS FUNCTION RETURNS A DECIMAL INTEGER
WHEN GIVEN A HEX, BINARY, OR DECIMAL STRING.

FUNCTION INTGD(TMPSA : S) : INTEGER;

VAR NUMBER,L INTEGER;

THIS FUNCTION RETURNS A DECIMAL INTEGER FROM
A DECIMAL STRING.

FUNCTION DEC (TMPA : S) INTEGER;

VAR TMPN : S;

D,EX,C,Z : INTEGER;

BEGIN (FUNCTION DEC)
D:=0;
Z:=0;

FOR c:=i TO STRLEN(TMPA) DO
BEGIN
Z:=Z*10;
IF Z-0 THEN Z:=l;
TMPN:=RIGHTMOST(TMPA);
IF TMPN'0' THEN EX:=0;
IF TMPN-'l' THEN EX:1l;

IF TMPN-'2' THEN EX:=2;
IF TMPN='3' THEN EX:=3;

~~ .

137

C THIS PROGRAM IS DESIGNED TO CREATE AND DOWNLOAD

FILES TO THE FUNCTIONAL TESTER, AND READ THE

RESULTS FROM THE D.U.T. BACK INTO A FILE.

$REF 50$
$SYSPROG ON$

PROGRAM HDR (INPUT,OUTPUT);

IMPORT IODECLARATIONS,
DGL LIB,

GENERAL 0,

GENERAL_1,
GENERAL_2,
GENERAL_3,
GENERAL 4;

TYPE
S = STRING[255];

TST VAR = ARRAY[l. .8] OF BOOLEAN;

D A- = ARRAY[I..2050,1..8] OF INTEGER;

P7TRD A = CD A;

CLXARRAY ARRAYJ..7] OF S;

VAR
CHR ARRY : PACKED ARRAY(..79] OF CHAR;

CK ARRAY : CLK ARRAY;
OK TO_DO,

DIRWRD IN,

p STOP,OOPS : BOOLEAN;

p : FILE OF PACKED ARRAYH..791

OF CHAR;

T F : FILE OF S;

F: FILE OF INTEGER;

WRDSPERBLOCK,

NUMBEROF BLOCKS,
WHICH GROUP,
WORDSLEFT,
DATAGROUPS,
DATAWORDS,

CNTVAR INTEGER;

DATAFILE,
RESULT,
TESTFILI,
STEMP,STEMP1 S;

10 RESVAR,
DIRVAR TST VAR;

136

*
86

N WRD

CLOS FIS7

END

* - ___ ___A

135

7

IRST BYTE

RES MASK
RUE?

y

IR IND y
OUTPUT
ODE?

N

I

WRITE D WRITE "XX'* TORESULT T,-F-7

N ECOND BYT

RES MAS
U

y y

DIR IND y
OUTPUT
ODE.

y
N

f

WRITE DATA TO WRITE "XX" TO

RESULT FILE RESULT F L

8

134

4
SUPIT 16-BI

7PJ

..

..............................- ,............--O-.-.?

............... REAT RESULTS-- -- -- --

~DT FILE.

133

03

62

_ N

INCR GROUP-CNT•= ?
-CT

INPUT DIRECTION OUTPUT OFFFFH
DATAWORDL TO GPIO

WORD TO PIO

0N

S ---. "--.N R N

27,

...
4

132

INPT DAAR OROOTPTPSF

-CNT _ TNT

3/RU

?0

INU AAWR UPT0FF

TO*I

... DAAWR

131

(T RANSSFER

lNIT VARB UI

OPEN TESTVECTOR
DATA FILE

FINPUT NUMBER OF

GROUPS USED &
WORDS/GROUP

INIT GPIO CA

.

145

WHILE NOT STOP DO
BEGIN
WRITELN;
IF NOT DIRWRDIN THEN

WRITE(lDATA GROUP NUMBERS ':19,

ELEWHICHGROUP:1,'&':1,WHICH
GROUP+1:1)

WRITE(C DIRECTION' :9);

WRITE(' WORDS LEFT ='.13,

WRDS_-PERBLOCK-WORDSLEFT: 4);
WRITELN;
WRITELN;
WRT(7p*
READLN (VALUE);
VALUE:=STRRTRIM (VALUE);
VALUE: =STRLTRIM (VALUE);
LNGTH:=STRLEN (VALUE);
LEFT:-LEFTMOST (VALUE);

* RIGHT:=RIGHTMOST(VALUE);
IF CLEFT , C)AND (LEFT ,')

THEN BEGIN

STR:=HEXIT (VALUE);
FA:=INTGD(STR);
PUT(F);

* WORDSLEFT : WORDSLEFT+1;
IF WORDSLEFT=WRDSPERBLOCK

THEN BEGIN
WHICH GROUP:=WHICH GROUP+2;
WORDSLEFT :=

END;

* END;
IF LEFT = (

THEN UNASSEI4BLE (VALUE, RIGHT, P TLNGTH,

WEDS PER BLOCK);

IF LEFT =E'THEN

BEGIN

* STRDELETECVALUE,1, 1);
K:=STRPOS('.*',VALUE);
TEMPA:-VALUE;
STRDELETE(TEMPA,K,STRLEN (VALUE) -K+1);

STRDELETE(VALUE,1,K+1);
K:=STRPOS(']I',VALUE);

* STRDELETE(VALUE,K,1);
PM:-INTGD(TEMPA);
PN:=INTGD(VALUE);

FOR PO:- PM TO PN DO
BEGIN

FA:=po;

PUT(F);
WOR)S LEFf: =WORDSLEFT+l;

0

146

IF WORDSLEFT=WRDS PER BLOCK

THEN IF P0 PN
THEN BEGIN

WORDS LEFT :

WHICHGROUP:WHICHGROUP'2;
END
ELSE
BEGIN

P0 : PN+1;
WHICH GROUP:=DATAGROUPS+;

WRITELN;
WRITELN;

WRITELN('YOU INPUT TOO MANY

WORDS FOR THIS GRUP!');

WRITELN;
WRITELN('PLEASE RE-INPUT

DATA WORDS.');

WRITELN;
WRITELN;
OOPS:=TRUE;
STOP:=TRUE;
END;

END;

END;
IF WHICH GROUP , NUMBER OF BLOCKS THEN STOP:=TRUE;

END
END; C CREATE

THIS PROCEDURE GETS THE TEST-CLOCK

* VALUES FOR THE DATA FILE.

PROCEDURE CLOCKS(VAR VALUE1 : CLK ARRAY);

TYPE LISTI = ARRAY[l..3,1..6] OF INTEGER;

LISTR = ARRAY(I..2,1..6] OF REAL;

CONST MASTERCLK = 20000000;

VAR 11,12,13,14,
15,TSTNUM,DI,
TSTFRQ,

*• CONTROL,
ERROR,

ESCAP : INTEGER;

SCH : CHAR;

R1,R2 : REAL;

Sl,$2 : S;

CORRECT : BOOLEAN;

i.t

147

MLISTI LISTI;
MLISTR LISTR;

CTHIS PROCEDURE POSITIONS THE CURSOR
AT THE BOTTOM OF THE SCREEN.

PROCEDURE SKIPPAGE;

VAR I :INTEGER;

BEGIN CSKIPPAGE
WRITELN(CHR(12));
FOR I:1l TO 24 DO

BEGIN
WRITELN;

END;

END; CSKIPPAGE

THIS PROCEDURE DRAWS THE GRAPHICS ARROW.

PROCEDURE ARROW(ARRCOLOR :INTEGER;
ARRX,ARRY :REAL);

BEGIN (ARROW
MOVE(ARRX,ARRY);
SET COLOR(ARRCOLOR);
LINE(ARRX,ARRY+0.1);
LINECARRX,ARRY);
LINE(ARRX+O.02,ARRY+O.02);
LINE(ARRX,ARRY);

LINE(ARRXO0.02,ARR Y+0.02);
SET COLOR~l);

END; (ARROW

THIS PROCEDURE BLANKS OUT THE AREA FOR MESSAGES.

PROCEDURE BBOX(ZY:REAL);

VAR YV,YVF :REAL;

BEGIN (B BOX)
SETCOLOR(O);
YV:=ZY+O.1;
YVF:=ZY-O.O1;
REPEAT
MOVE(-1.O,YV);
LINE (1.0, YV);

148

YV:=YV-O.005;

UNTIL YV-=YVF;
SETCOLOR(1);

END; (B BOX)

THIS PROCEDURE DRAWS THE TESTCLOCK AND THE

BASE OSCILLATOR TWICE.

PROCEDURE DRAWHCLK (VAR INTERVAL: REAL);

VAR FR1,FR2 :REAL;
*FS2 5 ;

BEGIN CDRAWHCLK
FR1:=MASTERCLK/TSTFRQ;
INTERVAL:=(2.0/FRl) /2;
MOVE(-0.95,0.9);

*GTEXT('BASE OSCILLATOR (20 MHz)');
MOVEC-1.0,0.7);
FR2:=-1.0;
REPEAT
FR2:=FR2+ INTERVAL;
LINE(FR2,0.7);
LINE(FR2,0.75);

LINE(FR2,O.7);
UNTIL FR2 7=1;
MOVE(-0.95,0.5);
FS2:='';

STRWRITECFS2,1,DI,TSTFRQ:.);
FS2:='TEST FREQ.= '+FS2+' Hz.';

GTEXTCFS2);
MOVE(-1.0,0.35);
LINE(-1.0,0.4);
LINE(-0.5,0.4);
LINE(-0.5,0.35);
LINE (0. 0,0. 35);

0 LINE(0.0,0.4);
LINE(0.5,0.4);

LINE(0.5,0.35);
LINE(1.0,0.35);
LINE(1.0,0.4);

END; (DRAWHCLOCK

THIS PROCEDURE DRAWS THE TESTCLOCK AND

THE BASE OSCILLATOR.

PROCEDURE DRAWCLX(VAR INTERVAL:REAL);

149

*VAR FR1,FR2 :REAL;

FS2 5 ;

BEGIN CDRAWCLK

FRi =MASTERCLK/TSTFRQ;
INTERVAL:=2. 0/FR1;

* MOVE(-O.95,0.9);

GTEXT('BASE OSCILLATOR (20 MHz)');
MOVE(-1.0,0.7);

FR2:=-1.O;
REPEAT

FR2 :-FR2+ INTERVAL;

* LINE(FR2,0.7);
LINE(FR2,0.75);
LINE (FR2 ,0. 7)

UNTIL FR2 -Yl;
MOVE(-0.95,0.5);

STRWRITECFS2,1,DI,TSTFRQ:l);
FS2:='TEST FREQ.= 'i-FS2+' Hz.';

GTEXT(FS2);
MOVE(-1.0,0.35);
LINE(-1.O,0.4);
LINE(0.0,0.4);

* LINE(O.0,0.35);
LINE(i.0,0.35);
LINE(l.0,0.4);

END; CDRAWCLX

* C DRAWS ALL OF THE CLOCKS.

PROCEDURE DRAWALL(VAR MLISTR:LISTR;

VAR MLISTI:LISTI);

VAR ii INTEGER;
Rl,R2,RA,
RXI,RX2 : REAL;
52. . S;

BEGIN (DRAW-ALL
DRAWHCLK(Ri);

SETCHARSIZE(0.045,0.065);
FOR Il:=lT TO 6 DO

BEG IN

RA: MLISTR [1, Il I
R2:-MLISTR[2,Il];
IF RA-v0 THEN RX1:=-l.0+((l-ABS(RA))/2);
IF RA70 THEN RXl:=-I.0+((l+RA)/2);

150

IF RA=O THEN RX1:=-0.5;

IF R2-t0 THEN RX2:=-1.0+(C1-ABS(R2))/2);
IF R270 THEN RX2:=-1.0+(C1+R2)/2);
IF R2=0 THEN RX2:=-0.5;

IF RX1 ?RX2 THEN
BEGIN

* MOVE(-1.0,Rl+0.05);
LINE(RX2,R1+0.05);
LINE(RX2,R1);
LINE(RX1,Rl);
LINE(RX1,R1+0.05);
LINE(0,Rl+0.05);

*IF MLISTI(3,Il]=l THEN
BEGIN

RXI.:RX1+1;
RX2:=RX2+1;

LINE(RX2,R1+0.05);
LINE(RX2,Rl);

* LINE(RX1,RJ4;
LINE(RX1,RI-Q.05);
LINE (1.0,R1+0 .05);

END;
IF MLISTI[3,1]2 THEN LINE(1.0,R1+0.05);

END;

* IF RXJ. RX2 THEN

BEGIN
MOVE(-1.0,R1);

LINE CRX1,R1);
LINE(RX1,R1+0.D05);
LINE CRX2,Rl+0.05);

* LINECRX2,R1);
LINE (0.0 , Ri)
IF MLISTI[3,Il]=l THEN

BEGIN
RX1:=RX1+l;
RX2:=RX2+1;

* LINE(RX1,R1);
LINE(RX1,R1+0.05);
LINE(RX2,R1+0.05);
LINE (RX2,R1);
LINEC1.0,Ri);

END;

* IF MLISTI[3,I11=2 THEN LINE(l.0,Rl);
END;

CASE Il OF

1 :S1:-'PCLKI';
2 :sl:='PcLK2';
3 :Sl:-'PCLK3';

p4 :Sl:='PCLK4';
5 :Sl:-'PDOUTEN';

151

6: Sl:-'PSTBIN';
END;
MOVE (-0.95,0.42-I1*0.18);

GTEXT(S1);
END;
SETLINESTYLE(5);
MOVE(0.0I 0.4);
LINE(0.0,-O.73);

SETLINESTYLE(1);
SET_ CHARSIZE(0.065,0.085);

END; CDRAWALL

THIS PROCEDURE SETS UP THE PROGRAMMABLE
CLOCKS FROM USER INPUT.

PROCEDURE PCLOCX (IV :INTEGER;
VAR PLISTI : LISTI;
VAR PLISTR : LISTR);

VAR NS,LNS,
PU,PD,PT :INTEGER;
INTERVAL,
DX,DY,
LDX,LDY,
VU,VD,
ZYVT :REAL;
PS2 : ;

PS1,PSL CHAR;

BEGIN (PROCEDURE POLOCK
DRAWCLK(INTERVAL);
OX:=1.O+3*INTERVAL;
DY:0O.0;
LDX:-DX;
LDY:-DY;
VU:--1.0+3*INTERVAL;

VD:=-1.0+4*INTERVAL;
ARROW (1, DX ,DY);
NS:-150;

IF IV V76
THEN

BEGIN
PU:=150;
PD:- 200;

VU:-1 .O+INTERVAL*3;

VD:--1.0+INTERVAL*4;
END

ELSE BEGIN
PU:-200;

152

PD:inlSO;
VU -i. O4INTERVAL*4;
VD:--1.O+INTERVAL*3;

END;

PSL:-CHR(28);
PS1:in'
REPEAT

SKIPPAGE;
IF IV-5 THEN WRITELN('THIS IS FOR CLOCK

"PDOUTEN" (LOW TRUE].')

ELSE IF IV=6 THEN WRITELN('THIS IS
FOR CLOCK "PSTBIN."')

ELSE WRITELN ('THIS IS FOR PROGRAMABLE
CLOCK PCLK':34,IV:lJ.,

IF (PS1-CHR(8)) OR (PS1-CHR(28)) THEN PSL:-PS1;
PS1:in' ';

READCHAR(2,PS1);
LNS:-NS;

IF PS1=CHR(28)THEN
BEGIN
NS:-NS+50;
LDX:-DX;
DX: 'DX+INTERVAL;

END;
IF PS1= CHR(8) THEN

BEGIN
NS:=NS-50;
LDX:-DX;
DX:-DX-INTERVAL,

END;

IF (PS1=CHR(13)) AND (PSL=CHiR(28)) THEN
BEGIN
LDX:-DX;
DX:-DX+(INTERVAL*1O);
NS :-NS+50*1O;

END;
IF (PS1=CHR(13)) AND (PSL-CHR(8)) THEN

BEGIN
LDX:=DX;

DX:=DX- (INTERVAL*1O);
NS:-NS-10* 50;

END;
IF (Dxn-.O~.+INTERVAL*3) OR (DX71.0) THEN

BEGIN
NS:=LNS;
DX:=LDX;

END;
IF (PS1=CHR(31)) AND (PD-T,.NS) THEN

BEGIN
PU:-NS;

153

VU: DX;
END;

IF (PS1=CHR(1O)) AND (PU.TNS) THEN
BEGIN

PD:-NS;
VD:=DX;

END;

IF PS1='S' THEN
BEGIN

PT:-PD;
PD:-PJ;
PU:-PT;
VT: -VD;

VD: -VU;
VU:-VT;

END;

ARROW(O,LDX,LDY);
ARROW (1, DX ,DY);
zy:=-O.35;
BBOXCZY);
PS2:=' ;

STRWRITE(PS2,1,DI,NS:1);
MOVE C-1.O,-O.35);
PS2:=PS2+'s. 1;

GTEXT(PS2);
ZY:=-O.5;
BBOX(ZY);

MOE(1.0, -0.5);

STRWRITE(PS2,1,DI,PU:1);

PS2:UP TRANS. '+PS2+'ns';

GTEXTCPS2);
MY-0.65;

BBOX(ZY);
MO-VE(-1.O,-O.65);
PS2:='';
STRWRITE(PS2,1,DI,PD:1);
Ps2:'IDOwN TRANS. '+PS2+lnst;
GTEXT(PS2);
IF ((PS1=CHR(31)) OR (PS1=CHR(1O)) OR

(PS1z'S')) AND (VU7VD) THEN

BEGIN

BBOX(-O.2);
MOVE (-1.0.,-O.1);
LINE(VD,-O.1);

LINE(VD,-0.15);
LINE(VU,-0.15);
LINE(VU,-0.1);

LINE(1.Oc-0.1);
END;

154

IF ((PSI=CHR(31)) OR (PS1=CHR(10)) OR
(PS1='S')) AND CVU-t=VD)THEN
BEGIN

BBOX(-0.2);
M0-vE(-1.0,-0.15);

LINE(VU,-O.15);

LINE(VU,-0.1);
LINE(VD,-O.1);
LINE(CVD, -0.15);
LINE(1.0,-0.15);

END;
IF PSI=CHR(13) THEN PSI:=PSL;
UNTIL (PS1=CHRC3)) AND (CIVT75) OR (PDvPU)) AND

((IV-%76) OR (PD7PU));
PLISTI(1,IV :-PU;
PLISTI[2,IV :-PD;
PLISTR[1,IV] :=VU;
PLISTR[2,IV] :=VD;
ZY:=-0.5;
REPEAT
BBOX(ZY);
ZY:=ZY-0.15;

UNTIL ZY t -0.70;
IF IV.T5 THEN

BEGIN

REPEAT
SKIPPAGE;
WRITELN('DO YOU WANT THIS CLOCK:

1-EVERY CYCLE')
WRITELN(' 2-EVERY OTHER CYCLE');
WRITE (7')

READ LN(P S1);
UNTIL (PS1-'I') OR (PS1-'2');

END
ELSE PS1:-'l';

IF PS1-'l' THEN PLISTIE3,IVJ:1l
ELSE PLISTI[3,IV:n2;

CLEARDISPLAY;
END; CPCLOCX

BEGIN (PROCEDURE CLOCKS

CONTROL: =0;
15 :0;
TSTNUM: =0;
ERROR:0O;
GRAPHICSINIT;
DISPLAYINIT(3,CONTROL,ERROR);
CLEARDISPLAY;
SETLINEqTYLE(1);

.* . . . * **. . * *A

155

SET CHAR SIZE(O.065,0.085);

CORRECT: = FLSE;

GETS USER INPUT FOR THE TESTCLOCK FREQUENCY)

REPEAT
WRITELN;
WRITELN;
REPEAT

WRITELN('INPUT THE DESIRED TESTCLOCK

FREQUENCY IN Hz');
WRITELN;
WRITE('7-p');

READLN(TSTFRQ);
WRITELN;
IF TSTFRQ70 THEN

BEGIN
RI:=256-(MASTERCLK/TSTFRQ);
Il:=TRUNC(RI);

I2:=I1+1;
IF (117155) AND (I2%256)

THEN CORRECT:=TRUE
ELSE WRITELN('VALUE IS OUT

OF ACCEPTED RANGE.');
END;

UNTIL CORRECT;

(CALCULATES FREQUENCY INTEGER FOR OUTPUT FILE)

WRITELN;WRITELN;

R2:=MASTERCLK/(256-II);

I3:=TRUNC(R2);
R2:-MASTERCLK/(256-I2);
14:=TRUNC(R2);

OBTAINS USER CHOICE OF FREQUENCY WHEN CHOSEN
FREQUENCY IS UNOBTAINABLE)

IF (TSTFRQwI3) AND (TSTFRQt-PI4) THEN
BEGIN

REPEAT
WRITELN(TSTFRQ:8,'Hz CANNOT BE OBTAINED.');
WRITELN;
WRITELN('THE TWO CHOICES

IN THAT RANGE ARE:');

WRITELN('1-':2,13:8,'Hz');
WRITELN('2-':2,I4:8,'Hz');
WRITELN;
WRITELN('INPUT THE NUMBER OF YOUR CHOICE.');
WRITELN;

,., . . . "

156

WRITE(',' :2);

READLN(15);
UNTIL (15=1) OR (I5=2);

(GETS FILE NUMBER FOR TEST FREQUENCY)

IF I5=1 THEN

BEGIN
TSTNUM:=I1;
TSTFRQ:=13;

END
ELSE IF I5=2 THEN

BEGIN
TSTNUM:=12;
TSTFRQ:=14;

END;
END;

IF TSTNUM=O THEN
IF TSTFRQ=13 THEN TSTNUM:=II

ELSE TSTNUM:=12;

WRITELN(CHR(12));
Ii:=l;

CALLS THE PROGRAMABLE CLOCK PROCEDURE

WHILE Il17 DO
BEGIN
PCLOCK(I,MLISTI,MLISTR);
WRITELN(CHR(12));
I1:=Ii+l;

END;

DRAWS ALL CLOCKS ON THE SCREEN

DRAW ALL(MLISTR,MLISTI);
SKIPPAGE;
WRITELN('PRESS vA, TO ACCEPT,

PRESS nR, TO REDEFINE ALL CLOCKS.');
REPEAT

READ(SCH);
UNTIL (SCH='A') OR (SCH='R');
IF SCH='R' THEN CLEAR DISPLAY;

UNTIL SCH'A';
SKIPPAGE;
WRITELN('DO YOU WANT A PLOT OF THE CLOCKS

vYES vNO?');
WRITE(',7');

READLN(SI);

157

(SENDS A PLOT TO THE PLOTTER)

IF Sl='Y' THEN
BEGIN
SKIPPAGE;
REPEAT

ESCAP:0O;
WRITE('TJRN ON PLOTTER,

POSITION PAPER, ':33);
WRITE('THEN PRESS nENTERP.');
READLN(S1);
TRY
DISPLAYINIT(705,CONTROL,ERROR);
DRAW ALL(MLISTR,MLISTI);
MOVE T-1.O,1.O);

LINE (1. 0, 1. 0)
LINE(1.O,-1.0);
LINE(-1.0,-1.0);
LINE (-1.0, 1.0)

RECOVER
IF ESCAPECODE = -27 THEN

BEGIN
SKIPPAGE;
ESCAP:=-27;
WRITE('THE PLOTTER

IS NOT ON. ':23);

END;
UNTIL ESCAP=O;
DISPLAYINIT(3,CONTROL,ERROR);

END;

CLEARDISPLAY;
WRITELN(CHR(12));

(GETS THE NUMBER FOR EACH CLOCK TO GO INTO THE FILE)

FOR I1:=l TO 6 DO
BEGIN

12 :-LISTI[1, Ill
13:=MLISTI[2,Il1]
12:=TRUNC(I2/50) 3;
I :-TRUNC (13/SO) -3;
IF MLISTI(3,I11 - 2 THEN

BEGIN
12:-12+128;

13:=I3+128;

END;
VALtE1(1411:=INTTOHEXSTRNG(I2*256+13);

158

END;

VALUEJ1l :=INT TOHEXSTRNG(TSTNUM);
END; (PROCEDURE CLOCKS

PROCEDURE DOWNLOADS A DATA FILE TO THE
TESTER AND THEN UPLOADS DATA FROM THE
TESTER TO A RESULTS FILE

PROCEDURE TRANSFR;

VAR

DARRY PTRDA;

ZIPLOK S;

CNTA,
DATAI,
DATA2,
,, INTEGER;

BEGIN CTRANSFR
COPS: =TRUE;
WRITELN;
WRITELN('TRANSFER TO FUNCTIONAL TESTER

is IN PROGRESS.');
WRITELN;
RESET(F,DATAFILE);

TRY
DATAGROUPS :FA
GET(F);
DATAWORDS:=FA;

GET(F);
STEMP:=INT TOBOOLS(FA);

GET(F);
FOR W:=l TO 8 DO

BEGIN
IF RIGHTMOST(STEMP) '1'

THEN 10_RESVAR[W]:=TRUE
ELSE 10_RESVAR(W]:=FALSE;

STRDELETE(STEMP,9-W, 1);

END;
IORESET(12);
FOR B:=l TO 4 DO

BEGIN
FOR W:=l TO 2048 DO

BEGIN

IF (B 7DATAGROUPS) OR (W ,DATAWORDS)
THEN

WRITEWORD (12,65535)

ELSE

172

7404 INVERTER TEST RESULTS

XX OH * 3FH

XX 1H * 3EH

XX 2H * 3DH

XX 3H 3CH
XX 4H * 3BH

XX 5H * 3AH

XX 6H * 39H

XX 7H * 38H

XX 8H * 37H

XX 9H * 36H

XX AH * 35H

XX BH * 34H

XX CH * 33H

XX DH * 32H

XX EH * 31H

XX FH * 30H

XX 10H * 2FH

XX 11H * 2EH

XX 12H * 2DH

XX 13H * 2CH

XX 14H * 2BH

XX 15H * 2AH

XX 16H * 29H

XX 17H * 28H

XX 18H * 27H

XX 19H * 26H

XX 1AH * 25H

XX IBH * 24H

XX ICH * 23H

XX 1DH * 22H

XX IEH * 21H

XX IFH * 20H

XX 20H * 1FH
XX 21H * IEH

XX 22H * 1DH

XX 23H * 1CH
XX 24H IBH
XX 25H * IAH

XX 26H 19H
XX 27H * 18H

XX 28H * 17H

XX 29H 16H
XX 2AH * 15H

XX 2BH * 14H

XX 2CH 13H
XX 2DH * 12H

171

-I

LO4

J Z
H0

LIHL

LJ in

zx 0 -

a4

0 0

a I i

170

2114 RAM TEST RESULTS

OH OH OH AH * XX

OH IH OH 5H * XX

OH 2H OH OH * XX

OH 3H OH 1H * xx

OH 4H OH 2H * XX

OH 5H OH 3H * XX

OH 6H OH 4H * XX

OH 7H OH 5H * XX

OH 8H OH 6H * XX

OH 9H *OH 7H * XX

OH AH OH 8H * XX

OH BH OH 9H * XX

OH CH OH AH * XX

OH DH OH BH XX

OH EH OH CH * XX

OH FH OH DH * XX

OH 10H OH EH * xx

OH llH OH FH * XX

OH 12H OH AH * XX

OH 13H OH 5H * XX

80H OH OH XX * AH

80H 1H OH XX *H

80H 2H OH XX * OH

80H 3H OH XX *H

80H 4H OH XX * 2H

80H 5H OH XX * 3H

80H 6H OH XX * 4H

80H 7H OH XX * 5H

80H 8H OH XX * 6H

80H 9H OH XX * 7H

SOH Al OH XX * 8H

8H BH OH XX * 9H

80H CH OH XX *A

80H DH OH XX *BH

80H EH OH XX * CH

80H FH OH XX * DH

80H 10H OH XX * EH

80H IIH OH XX *FH

80H 12H OH XX *AH

80H 13H OH XX * 5H

169

a T)*

z I

LlLu

xz

n(n

~r~u

(n -

-'U ~ m~~- 0 -4m

168

APPENDIX E

TEST RESULTS

167

READLN(STEMP);
END;
GET(P);
UNTIL EOF(P);

END;
END;

166

WRITELN(' '.P,RINTER');

WRITELN(' -Si7CREEN');
WRITELN(l %NrO LISTING');
WRITELN;

WRITE('r'r');j
IF STEMP - 'P' THEN
BEGIN

WRITESTRINGLN(9,'')
WRITESTRINGLN(9,')

WRITESTRING(9,'
DATA)

WRITESTRINGLN(9,'
RESULT');

WRITESTRINGLN(9,')

WRITESTRINGLN(9,')

WRITESTRING(9,---------------

WRITESTRINGLN(9, -----------------

WRITESTRINGLN(9,1)

RESET (P, RESULT)
REPEAT

CHR ARRY:=PA;
CHR ARRY[79I:' '

STRI4OVE(79,CHRARRY,1,STEMP,1);
WRITESTRINGLN (i,STEMP);

GET(P);

UNTIL EOF(P);
END;

IF STEMP - 'S' THEN
BEGIN
WRITELN(CHR(12));
CNTVAR:-5;
WRITELN(' ':18,'DATA':4,' ':35,'REStILT');
WRITE('---------------------------------

------- '-:40);
WRITELN(f '-------------------

---- ---- --.40);
RESET (P, RESULT)
REPEAT
CHRARRY:-PA;
CHRARRY[79:-m'
WRITELN (CHRARRY);
CNT VAR:-CNT VAR+l;
IF ZNTVAR ,20 THEN
BEGIN
CNTVAR:inl;
WRITELN;
WRITELN(' ':28,'PRESS %ENTERv FOR MORE');

165

WRITELN;
TRANS FR;

END
ELSE BEGIN

OOPS:-TRUE;
WRITELN(INPUT THE NAM4E OF YOUR DATA FILE');

READLN(TESTFILE);
DATAFILE:-TESTFILE;

CNT VAR:-STRPOS('.',TESTFILE);
IF CNTVAR'0 THEN

STRDELETE (TESTFILE, CNTVAR,
(STRLEN(TESTFILE)-CNTVAR);

WRITELN;
WRITELN ('DO YOU WANT TO USE THE SAME

TEST CLOCKS EY/NI ?');
REPEAT

READLN (STEMP);
UNTIL (STEMP -'Y') OR CSTEMP 'N');
IF STEMP - 'N'
THEN
BEGIN
OPEN(F,DATAFILE);
GET(F;

DATAGROUPS:-2*FA;
GET(F;
DATAWORDS:-FA;

GET(F;
CNTVAR:=(DATAWORDS*
(TRUNC(DATAGROUPS/2) + 1)) +4;

SEEK(F,CNTVAR);
CLOCKS(CKARPRAY);
FOR CNT VAR:- 1 TO 7 DO

BEGIN
FA:INTGD(CKARRAY[CNTVAR]);
PUT(F;

END;
CLOSE(F, 'CRUNCH');
WRITELN;

WRITELN,
END;

TRANS FR;
END;

IF OOPS THEN
BEGIN
WRITELN;
WRITELN;
WRITELN('WOULD YOU LIKE A LISTING OF THE

RESULT FILE TO:');

164

WHILE OOPS DO

BEGIN
DIRWRD IN:=FALSE;
DATAFIL::TESTFILE;
STRAPPEND(DATAFILE, '.0');
REWRITE (F,DATAFILE);
FA:=ROUND (DATAGROUPS/2);

PUT(F);
FA: DATAWORDS;
PUT(F);
WRITELN;
WRITELN ('PLEASE ENTER AN 8-BIT BINARY NUMBER

WITH A "1" FOR')
WRITE('EACH 8-BIT DATA GROUP WHICH

CONTAINS TEST RESULT')
WRITELN('DATA.');
WRITELN;
WRITE ('7') ;
READLN(STEMP);
IF RIGHTMOST(STEMP),,7'B'

THEN STEMP:=STEMP+'Bl;
FA:=INTGD(STEMP);
PUT(F);
WRITELN (ENTER THE VALUES OF THE DATA

WORDS (16-bit) .');

CREATE (DATAWORDS, DATAGROUPS);
END;
OOPS:=TRUE;
WHILE OOPS DO
BEGIN

WRITELN;
DIR WRD IN:=TRUE;
WRITE('iLEASE ENTER THE "DIRECTION" WORDS,');
WRITELN('WITH THE LEAST SIGNIFICANT ');

WRITELN('BIT AS THE DIRECTION FOR DATA GROUP
NUMBER l');

CREATE (DATAWORDS, 1);

END;
CLOCKS (CKARRAY);
FOR CNTVAR:= 1 TO 7 DO

BEGIN
FA:=INTGD(CKARRAY[CNTVAR]);
PUT(F);

END;
CLOSE(F, 'CRUNCH');
WRITELN;
WRITELN;
WRITELN('FILE "':6,DATAFILE,'" CREATED':9);

WRITELN;
WRITELN;

II

163

MAIN PROGRAM(********** ***************ROGAM **************)'

BEGIN (MAIN PROGRAM)
WRITELN;
WRITELN;
WRITE(' ':20,'WELCOME TO THE

MSU FUNCTIONAL TESTER':37);

* FOR CNT VAR:=1 TO 10 DO WRITELN;
WRITELN;
REPEAT
WRITELN('DOES THE TEST DATA FILE ALLREADY EXIST?

•. [Y/N]') ;

WRITE('77' :2);
* READLN(STEMP);

UNTIL (STEMP = 'Y') OR (STEMP 'N');
WRITELN;
IF STEMP = 'N'

THEN BEGIN
WRITELN;

op WRITELN('ENTER THE NAME YOU WANT FOR YOUR
DATA FILE');

WRITE('r');
READLN(TESTFILE);
WRITELN;

REPEAT
WRITE('HOW MANY GROUPS OF EIGHT(8) DATA

LINES WILL ');
WRITELN ('BE USED FOR OUTPUT?');

WRITE(C',':2);
READLN (DATAGROUPS);
WRITELN;
IF DATAGROUPS78 THEN

WRITELN('INVALID NUMBER');

UNTIL DATAGROUPS,=8;

WRITELN;
REPEAT
WRITELN('HOW MANY DATA WORDS WILL BE USED?');

WRITE('7 :2);
READLN (DATAWORDS);
WRITELN;

IF DATAWORDS72048 THEN
WRITELN('INVALID NUMBER');

UNTIL DATAWORDSt=2048;
OOPS:=TRUE;

'a

,.p ' . " , _ ', " " ; _ - ' ' - - -.-' ' °- - ' , -.' .. ' ,- " .-' ''' '' ..., " ,'' .' ' 2 . . . -' . ' " -"- ' .

162

INT_-TO_-HEXSTRNG(D_ ARRyA[W,B])+' '

END;

B:=B-1;

END;

I:=TRUNC((40-STRLEN(STEMP))/2);

FOR J:1l TO I DO

BEGIN
STEMP:'l '+STEMP;

END;

IF NOT ODD(STRLEN(STEMP)) THEN I:1I-1;

FOR J:-l TO I DO
BEGIN

STEMP:=STEMP+' '

* END;
STEMP1:-T FA;

I:=TRUNC(T40-STRLEN(STEMPl))/2);

FOR J:-l TO I DO
BEGIN

STEMPI:=' '+STEMP1;

END;

STEMP:-STEMP+' * '4STEMPl;

GET(TF);

STRMOV E(STRLEN(STEMP) ,STEMP,1,CHRARRY,1);
FOR J:=l TO 79 DO

BEGIN
IF CHRARRY(J]=CHR(O)

THEN CHRARRY[J]:=' '

END;

CHRARRY[791:=CHR(13);
PA:=;CHRARRY;

PUT(P);
END;

CLOSE(TF,'PURGE');
CLOSE(P, 'CRUNCH');
END;
WRITELN;
WRITELN ('DATA LOADED');

RECOVER

IF ESCAPECODE - IQESCAPECODE THEN

BEGIN
WRITELN;
WRITELN;
WRITELN('ERROR IN LOADING DATA

FROM FUNCTIONAL TESTER');

* OOPS :- FALSE;
END

ELSE ESCAPE CESCAPECODE);

END; (IF OOPS DO)

END; (END TRANSFR

161

FOR W:1. TO DATAWORDS DO

* BEGIN

STEMP:='';
FOR CNTA:1l TO 8 DO
BEG IN

IF D_ JRRYA[W,BJ,-c6
THEN STEMP:=STEMP+' '

IF D ARRYA[W,B[IC72000OO

THEN IF DARRYA(W,B] "t1OOOOO

THEN STEMP:=STEMP +

INTTOHEXSTRNG(D ARRYA(W,BI)*'

ELSE STEP: =STEMP+ I XX'+'

B:=B-1;S END;
T FA:=STE4P;
PUT(TF);

END;

OPEN(F,DATAFILE);
SEEK (F, 4);
GET(F);
NEW(DARRY);
FOR B:1l TO DATAGROUPS DO

BEGIN
FOR W:1l TO DATAWORDS DO

BEGIN
DATA1:Fl
GET(F);

DATA2 :=TRUNC CDATA1/256);

DATAI:=DATAl-DATA2* 256;

D ARRyA[W,B*2-1]:-DATAl;
D ARRYA(W,B*2 :-DATA2;

END;

END;

RESET(TF);
REWRITE (P, RESULT);

FOR W:J. To DATAWORDS DO

BEGIN
BOOL(FA,DIRVAR);
GET(F);
STEMP:='';
FOR CNTA:=l TO DATAGROUPS*2 DO

BEGIN
B:=DATAGROUPS* 2-CNTA+l;

IF DIRVAR(B] THEN

STEMP:-STEMP+' XX'+l
ELSE BEGIN

IF DARRYA[W,BI-16
THEN STEMP:-STEMP+' '

STE?4P:=STEMP +-

.

160

BEGIN
* READWORD(12,DATAl);

SEEK (F,DATAWORDS*DATAGROUPS+4);
GET(F);
FOR W:1l TO 2046 Do
BEGIN

IF W wDATAWORDS
* THEN READWORD(12,DATAI)

ELSE
BEGIN
READWORD(12,DATAI);
IF DATAINO

THEN DATA1:=DATA1+65536;
* DATA2:=TRUNC (DATA1/256);

DATAI:=DATAl-DATA2*256;

DARRYA[W,B*2-1]:=200000;
DARRYA[W,B*2] :200000;
IF 10_RESVARfB*2-1] OR

I0_RESVAR[B*21
* THEN BEGIN

BOOL(F.A,DIRVAR);
GET(F);
IF 10 RESVARfB*2-1I
THEN IF DIRVAR(B*2-l]
THEN

*DARRYA[W,B*2-1]:=A~

ELSE
DARRYA[W,B*2-1] :100000;
IF 10 RESVAR(B*21
THEN IF DIRVAR[B*2J
THEN
D _ARYAW,B*2]:=DATA2
ELSE
DARRYA[W,B*21 :100000;

END;
END;

END; (~END W LOOP *
* READWORD(12,DATAl);

IF 10_RESVAR[B*2-11
THEN BEGIN
DARRY^f2O47,B*2-1:=100000;
DARRYA[2O48,B-2-i] :=100O00;

END;
IF 10_RESVAR[B*2]

THEN BEGIN
0_ARRYAC2O47,B*2] :100000;
OARRYA(2048,B*21:=100000;

END;
END; (END B LOOP *

REWRITE(TF);

159

BEGIN

* WRITEWORD(12,FA);
GET(F);

END;

END;
END;

FOR W:=l To 2048 DO

* BEGIN
IF W-,DATAWORDS THEN WRITEWORD(12,65535)

ELSE
BEGIN
WRITEWORD(12,FA);

GET(F);

* END;
END;

REPEAT
DATAl :=FA;

WRITEWORD (12 ,DATA1);

GET(F);

* UNTIL EOF(F);
WRITELN('TRANSFER TO FUNCTIONAL

TESTER IS COMPLETE');

RECOVER
IF ESCAPECODE =IOESCAPECODE
THEN BEGIN

* WRITELN;
WRITELN(IOERRORM4ESSAGE(IOERESULT));
WRITELN;

WRITELN('PLEASE CORRECT THE ERROR

AND RERUN THE PROGRAM');

OOPS:=FALSE;
WRITELN;

END;

IF OOPS
THEN BEGIN
TRY

RESULT: -TESTFILE;

STRAPPEND(RESULT,'.R');
OPEN (F,DATAFILE);
WRITELN;
WRITELN('LOADING DATA FROM FUNCTIONAL

TESrER TO FILE ',RESULT);

NEW(DARRY);
FOR B:=l TO 8 DO

BEGIN
D ARRYAf2O47,B] :-20000;
D ARRYA[2048,B] :-200000;

END;
FOR B:=l TO 4 DO

173

XX 2EH *11H

XX 2FH 10HO

XX 30H *FH

XX 31H *EH

XX 32H *DH

*XX 33H *CH

XX 34H *BH

XX 35H *AH

XX 36H *9H

XX 37H S H

XX 38H *7H

XX 39H1 6H

XX 3AH *5H

XX 3BH *4H

XX 3CH 3H

XX 3DH *2H

XX 3EH *IH

Xx 3FH *OH

-1-0

174

Q I-
0

FE-

Li U

co

Ku

u a.

00L

* a)

9 C3 0

175

7482 2-BIT BINARY FULL ADDER

XX OH OH OH * OH

XX OH OH 1H * 1H
l XX OH OH 2H * 2H

XX OH OH 3H * 3H

XX OH 1H OH * 1H
XX OH 1H 1H * 2H

XX OH 1H 2H * 3H

XX OH 1H 3H * 4H

• XX OH 2H OH * 2H

XX OH 2H 11 * 3H

XX OH 2H 2H * 4H

XX OH 2H 3H * 5H

XX OH 3H OH * 3H
XX OH 3H 11 * 4H

XX OH 3H 2H * 5H

XX OH 3H 3H * 6H

XX 1H OH OH * IH

XX 1H OH IH * 2H

XX IH OH 2H * 3H

XX 1H OH 3H * 4H

XX 1H 1H OH * 2H

XX 1H IH 1H * 3H

XX IH 1H 2H * 4H

XX 1H 1H 3H * 5H

XX IH 2H OH * 3H

XX 1H 2H 1H * 4H
XX 1H 2H 2H * 5H

0 XX 1H 2H 3H * 6H

XX 1H 3H OH * 4H
XX 1H 3H 18 * 5H

XX 1H 3H 2H * 6H

XX 1H 3H 3H * 7H

. .. ' " "" : ' " "

176

S

REFERENCES

177

References

Atlas, Joseph & Nielsen, Robert High-Speed
Digital Test Capability For Emerging

Technology . IEEE AUTOTESTCON '83

Transactions, 1983.

Bipolar Microprocessor Logic and Interface
Data Book . Advanced Micro Devices

Inc., 1983.

CMOS Digital Data Book . Harris
Corporation, 1984.

iAPX 86/88, 186/188 User's Manual Programmer's

Reference . Intel Corporation, 1983.

The 8086 Family User's Manual . Intel
Corporation, 1980.

8086 Assembly Language Programming Manual
Intel Corporation, 1984.

MCS-86 User's Manual . Intel Corporation, 1984.

SDK-86 MCS-86 System Design Kit Assembly Manual
Intel Corporation, 1984.

O'Keefe, Rob, Gebhard, Dick, & O'Connell, Tim
Test Patterns For Static RAMs . IEEE
1979 Test Conference, LSI & Boards, 1979.

Puri, Prem The Functional Tester:An Aid To
The Designer . IEEE 1980 Test Conference,
1980.

Robinson, Arthur L. One Billion Transistors on
a Chip? . Science, Vol. 223, No. 4631,
6 January 1984.

Short, Kenneth L. Microprocessors and Programmed
Logic . Englewood Cliff, N.J.: Prentice-
Hall, Inc., 1981.

The TTL Data Book for Design Engineers
Texas Instruments Incorporated, 1973.

FILMED

10-85

DTlC

